Fire Design of Concrete Structures - Materials, Structures and Modelling


Book Description

Fire design of concrete structures has emerged in recent years as a high profile subject of great interest to both experts and the public. This has been largely prompted by severe damage to concrete in a number of recent tunnel fires, as well as a considerable amount of research and development that has taken place world-wide. fib Task Group 4.3, "Fire Design of Concrete Structures", therefore took the initiative to develop this bulletin in order to present the results of this international research to a wider group of concrete professionals. The report presents a general brief outline of the effect of fire on both concrete material and concrete structures, with emphasis placed on the important developments of the past few years, namely: (a) the increasing use of high strength concrete (HSC) in buildings, tunnels and bridges; (b) the growing acceptance of the use of performance based fire engineering calculations for the structural analysis and design against fire; (c) the problem of, and solutions to, explosive spalling; and (d) fires in tunnels. This report is not intended to be an exhaustive review of the effect of fire on concrete and concrete structures, nor to present a database of properties at high temperature. Instead, the main aims of this document are to present recent trends and developments, highlight key influencing factors, bring together the disparate but related issues in one short document, highlight the deficiencies in current practice and point to the future. The basic principles of performance based codes and fire engineering are also presented on the assumption that the reader is not a specialist in this field.




Fundamental Research on Creep and Shrinkage of Concrete


Book Description

Today research on creep and shrinkage of concrete is diversified to such a degree that specialists working in different areas sometimes find it difficult to understand one-another. Materials scientists are mainly interested in processes on a microstructural level but they do not necessarily understand the relevance of time dependent deformation in structural design. On the other hand engineers who apply simplified model laws in non-elastic structural analysis are not always in the position to judge the limitations implied in their approach. It is generally realized that further development can be stimulated by a more effective exchange of results and ideas among the different groups involved. In an attempt to bridge this obvious gap in September 1980 there was a Conference organized at Swiss Federal Institute of Technology in Lausanne. The papers presented at this meeting covered the wide range starting with microstructural aspects and mechanisms and including constitutive modelling and structural creep analysis. These contributions together with summaries of two panel discussions are being published in this volume. All serious of the meeting have been introduced by invited lectures. These papers will be published in a special volume "Creep and Moisture Effects in Concrete". This special volume is rather to be a general survey of the different areas covered while the present conference proceedings provide a unique selection of research papers. Nowadays time-dependent deformation of concrete can be taken into consideration realistically by computerized structural analysis.







Mathematical Modeling of Creep and Shrinkage of Concrete


Book Description

Based on the proceedings of the Fourth International Union of Testing and Research Laboratories in Materials and Structures (RILEM) Symposium held at Northwestern University, August 1986. Contributions reflect the state of the art and address the major concerns related to long-term serviceability of concrete construction.
















Concrete and Masonry Movements


Book Description

Widely used in the construction of bridges, dams and pavements, concrete and masonry are two of the world's most utilized construction materials. However, many engineers lack a proper understanding of the methods for predicting and mitigating their movements within a structure. Concrete and Masonry Movements provides practical methods for predicting and preventing movement in concrete and masonry, saving time and money in retrofitting and repair cost. With this book in hand, engineers will discover new prediction models for masonry such as: irreversible moisture expansion of clay bricks, elasticity, creep and shrinkage. In addition, the book provides up-to-date information on the codes of practice. - Provides mathematical modelling tools for predicting movement in masonry - Up-to-date knowledge of codes of practice methods - Clearly explains the factors influencing all types of concrete and masonry movement - Fully worked out examples and set problems are included at the end of each chapter