Comprehensive Coordination Chemistry II


Book Description

Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.




Supramolecular Catalysis


Book Description

Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.




Organic Ligands in Marine Trace Metal Biogeochemistry


Book Description

This research topic highlights the most recent accomplishments of a Scientific Committee on Oceanic Research (SCOR) Working Group, SCOR WG 139: Organic Ligands - A Key Control on Trace Metal Biogeochemistry in the Ocean.




Metal-Organic Frameworks


Book Description

Metal-organic frameworks represent a new class of materials that may solve the hydrogen storage problem associated with hydrogen-fueled vehicles. In this first definitive guide to metal-organic framework chemistry, author L. MacGillivray addresses state-of-art developments in this promising technology for alternative fuels. Providing professors, graduate and undergraduate students, structural chemists, physical chemists, and chemical engineers with a historical perspective, as well as the most up-to-date developments by leading experts, Metal-Organic Frameworks examines structure, symmetry, supramolecular chemistry, surface engineering, metal-organometallic frameworks, properties, and reactions.




Chemical Abstracts


Book Description




Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control


Book Description

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control deals with the synthesis of metal nanoclusters along all known methodologies. Physical and chemical properties of metal nanoclusters relevant to their applications in chemical processing and materials science are covered thoroughly. Special attention is given to the role of metal nanoclusters size and shape in catalytic processes and catalytic applications relevant to industrial chemical processing.An excellent text for expanding the knowledge on the chemistry and physics of metal nanoclusters. Divided in two parts; Part I deals with general aspects of the matter and Part II has to be considered a useful handbook dealing with the production of metal nanoclusters, especially from their size-control point of view.* Divided into two parts for ease of reference: general and operational * Separation of synthetic aspects, physical properties and applications* Specific attention is given to the task of metal nanoclusters size-control




Beauty in Chemistry


Book Description

The Beauty of Chemistry in the Words of Writers and in the Hands of Scientists, by Margherita Venturi, Enrico Marchi und Vincenzo Balzani Living in a Cage Is a Restricted Privilege, by Luigi Fabbrizzi Inner and Outer Beauty, by Kenneth N. Raymond und Casey J. Brown The Mechanical Bond: A Work of Art, by Carson J. Bruns und J. Fraser Stoddart The Beauty of Knots at the Molecular Level, by Jean-Pierre Sauvage und David B. Amabilino




Immobilized Catalysts


Book Description

R. Haag, S. Roller: Polymeric Supports for the Immobilisation of Catalysts .- J. Horn, F. Michalek, C.C. Tzschucke, W. Bannwarth: Non-Covalently Solid-Phase Bound Catalysts for Organic Synthesis .- Y. Uozumi: Recent Progress in Polymeric Palladium Catalysts for Organic Synthesis .- D.E. Bergbreiter, J. Li: Applications of Catalysts on Soluble Supports .- B. Desai, C.O. Kappe: Microwave-Assisted Synthesis Involving Immobilized Catalysts .- A. Kirschning, G. Jas: Applications of Immobilized Catalysts in Continuous Flow Processes .- N. End, K.-U. Schöning: Immobilized Catalysts in Industrial Research and Application .- N. End, K.-U. Schöning: Immobilized Biocatalysts in Industrial Research and Production




Nanoporous Materials: Science And Engineering


Book Description

Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the “nothingness” within — the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories — micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm.Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials.This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc./a




Metal-Organic Framework Materials


Book Description

Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc