Engineering Materials 2


Book Description

Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.




Materials and Technologies in Mechanical Engineering


Book Description

Special topic volume with invited peer reviewed papers only




Engineering Materials Science


Book Description

This introductory text is intended to provide undergraduate engineering students with the background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design. A computer diskette is included.




Nanoelectronic Device Applications Handbook


Book Description

Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal–oxide–semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world. These include: Nanoscale advances in current MOSFET/CMOS technology Nano capacitors for applications such as electronics packaging and humidity sensors Single electron transistors and other electron tunneling devices Quantum cellular automata and nanomagnetic logic Memristors as switching devices and for memory Graphene preparation, properties, and devices Carbon nanotubes (CNTs), both single CNT and random network Other CNT applications such as terahertz, sensors, interconnects, and capacitors Nano system architectures for reliability Nanowire device fabrication and applications Nanowire transistors Nanodevices for spintronics The book closes with a call for a new generation of simulation tools to handle nanoscale mechanisms in realistic nanodevice geometries. This timely handbook offers a wealth of insights into the application of nanoelectronics. It is an invaluable reference and source of ideas for anyone working in the rapidly expanding field of nanoelectronics.




A TEXTBOOK OF MANUFACTURING TECHNOLOGY II


Book Description

For the Students of B.E./B.Tech. Anna University & other Technical Universities of India




Materials Selection and Applications in Mechanical Engineering


Book Description

Unlike any other text of its kind, Materials Selection and Applications in Mechanical Engineering contains complete and in-depth coverage on materials of use, their principles, processing and handling details; along with illustrative examples and sample projects. It clearly depicts the needed topics and gives adequate coverage with ample examples so that ME students can appreciate the relevance of materials to their discipline. Featuring the basic principles of materials selection for application in various engineering outcomes, the contents of this text follow those of the common first-level introductory course in materials science and engineering. Directed toward mechanical engineering, it introduces the materials commonly used in this branch, along with an exhaustive description of their properties that decide their functional characteristics and selection for use, typical problems encountered during application due to improper processing or handling of materials, non-destructive test procedures used in maintenance to detect and correct problems, and much more. What's more, numerous examples and project-type analyses to select proper materials for application are provided. With the use of this unique text, teaching a relevant second-level course in materials to ME majors has never been easier Covers all aspects of engineering materials necessary for their successful utilization in mechanical components and systems. Defines a procedure to evaluate the materials' performance efficiency in engineering applications and illustrates it with a number of examples. Includes sample project activities, along with a number of assignments for self exercise. Keeps chapters short and targeted toward specific topics for easy assimilation. Contains several unique chapters, including microprocessing, MEMS, problems encountered during use of materials in mechanical components, and NDT procedures used to detect common defects such as cracks, porosity and gas pockets, internal residual stresses, etc. Features commonly used formulae in mechanical system components in an appendix. Several tables containing material properties are included throughout the book.




Brain Korea 21 Phase II


Book Description

The Brain Korea 21 Program (BK21), which seeks to make Korean research universities globally competitive and to produce more high-quality researchers in Korea, provides funding to graduate students and professors who belong to research groups at top universities. The authors develop quantitative and qualitative models to evaluate how well BK21 is fulfilling its goals and make suggestions for further stimulating Korean university research.




Advanced Machining and Finishing


Book Description

Advanced Machining and Finishing explains the background theory, working principles, technical specifications, and latest developments in a wide range of advanced machining and finishing techniques. The book includes valuable technical information, tables of data, and diagrams to assist machinists. Drawing on the work of experts in both academia and industry, coverage addresses theoretical developments as well as practical improvements from R&D. With over 25 important processes, from electro-chemical machining to nano-machining and magnetic field assisted finishing, this is the most complete guide to this subject available. This unique guide will allow readers to compare the characteristics of different processes, understand how they work, and provide parameters for their effective implementation. This is part of a 4 volume set entitled Handbooks in Advanced Manufacturing, with the other 3 addressing Advanced Welding and Deforming, Additive Manufacturing and Surface Treatment, and Sustainable Manufacturing Processes. - Provides the theory, operational parameters, and latest developments in over 25 different machining and finishing processes - Addresses both traditional and non-traditional machining methods - Introduces basic concepts in an introductory chapter, helping readers from a range of backgrounds to engage with the subject matter




Information Technologies in Biomedicine


Book Description

Information Technology in Biomedicine is an interdisciplinary research area, that bridges the gap between tethodological achievements in engineering and clinical requirements in medical diagnosis and therapy. In this book, members of the academic society of technical and medical background present their research results and clinical implementation in order to satisfy the functional requirements of authorized physicians for the benefit of the patients. An extended area is covered by the articles. It includes biomedical signals, medical image processing, computer-aided diagnosis and surgery, biometrics, healthcare and telemedicine, biomechanics, biomaterials, bioinformatics. Section on bronchoscopy presents the basis as well as new research studies performed in this field. Papers present various theoretical approaches and new methodologies based on fuzzy sets, mathematical statistics, mathematical morphology, fractals, wavelets, syntactic methods, artificial neural networks, graphs and many others.




Electronic, Magnetic, and Optical Materials


Book Description

More than ever before, technological developments are blurring the boundaries shared by various areas of engineering (such as electrical, chemical, mechanical, and biomedical), materials science, physics, and chemistry. In response to this increased interdisciplinarity and interdependency of different engineering and science fields, Electronic, Magnetic, and Optical Materials takes a necessarily critical, all-encompassing approach to introducing the fundamentals of electronic, magnetic, and optical properties of materials to students of science and engineering. Weaving together science and engineering aspects, this book maintains a careful balance between fundamentals (i.e., underlying physics-related concepts) and technological aspects (e.g., manufacturing of devices, materials processing, etc.) to cover applications for a variety of fields, including: Nanoscience Electromagnetics Semiconductors Optoelectronics Fiber optics Microelectronic circuit design Photovoltaics Dielectric ceramics Ferroelectrics, piezoelectrics, and pyroelectrics Magnetic materials Building upon his twenty years of experience as a professor, Fulay integrates engineering concepts with technological aspects of materials used in the electronics, magnetics, and photonics industries. This introductory book concentrates on fundamental topics and discusses applications to numerous real-world technological examples—from computers to credit cards to optic fibers—that will appeal to readers at any level of understanding. Gain the knowledge to understand how electronic, optical, and magnetic materials and devices work and how novel devices can be made that can compete with or enhance silicon-based electronics. Where most books on the subject are geared toward specialists (e.g., those working in semiconductors), this long overdue text is a more wide-ranging overview that offers insight into the steadily fading distinction between devices and materials. It is well-suited to the needs of senior-level undergraduate and first-year graduate students or anyone working in industry, regardless of their background or level of experience.