High Sensitivity Moiré


Book Description

A description of both the theory and practice of physical measurements that use high-sensitivity moiré - principally moiré interferometry. The focus here is on the mechanics and micromechanics of materials and structural elements and the book includes new studies published for the first time. Diverse fields are addressed: advanced composite materials, thermal stresses, electronic packaging, fracture, metallurgy, time-dependence, strain gage calibration. All the methods can be applied for whole-field measurements on nearly and solid bodies. This reader-friendly book will serve engineers and scientists who are concerned with measurements of real phenomena, while also stimulating students to pursue the treasures of experimental analysis.




A History of Mechanical Engineering


Book Description

This book explores the history of mechanical engineering since the Bronze Age. Focusing on machinery inventions and the development of mechanical technology, it also discusses the machinery industry and modern mechanical education. The evolution of machinery is divided into three stages: Ancient (before the European Renaissance), Modern (mainly including the two Industrial Revolutions) and Contemporary (since the Revolution in Physics, especially post Second World War). The book not only clarifies the development of mechanical engineering, but also reveals the driving forces behind it – e.g. the economy, national defense and human scientific research activities – to highlight the links between technology and society; mechanical engineering and the natural sciences; and mechanical engineering and related technological areas. Though mainly intended as a textbook or supplemental reading for graduate students, the book also offers a unique resource for researchers and engineers in mechanical engineering who wish to broaden their horizons.




Mechanical Science for Technicians


Book Description

Mechanical Science for Technicians, Volume 1, Second Edition focuses on the understanding of mechanical engineering and analytical approaches to solutions of problems involving deformation of materials, dynamics, and fluid flow. The monograph first elaborates on stress, strain, elasticity, and shear force and bending moment and stress. Discussions focus on the relationship between bending stress and external bending moment, assumptions made in the simple theory of bending, geometrical properties of plane sections, stress and strain in composite bars, and the effect of temperature change on composite bars. The manuscript then takes a look at the torsion of circular shafts, including torsion of hollow circular shafts, shear stress and angle of twist, and the relationship between shear stress and external torque. The text examines angular motion, kinetic energy, simple oscillations, and fluids in motion. Topics include pressure, kinetic, and potential energy, effect of approach velocity on flow through an orifice, oscillations of a simple pendulum, rotational or angular kinetic energy, and equations of uniform angular motion. The monograph is a valuable reference for engineers and researchers interested in mechanical engineering.




Mechatronics


Book Description

Mechanical engineering, an engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound is sues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate ed ucation and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the front page of the volume. The areas of concentration are applied mechanics, biomechanics, compu tational mechanics, dynamic systems and control, energetics, mechanics of material, processing, thermal science, and tribology. Professor Marshek, the consulting editor for dynamic systems and con trol, and I are pleased to present this volume of the series: Mechatronics: Electromechanics and Contromechanics by Professor Denny K. Miu. The selection of this volume underscores again the interest of the Mechanical Engineering Series to provide our readers with topical monographs as well as graduate texts.




Nanoindentation


Book Description

This new edition of Nanoindentation includes a dedicated chapter on thin films, new material on dynamic analysis and creep, accounts of recent research, and three new appendices on nonlinear least squares fitting, frequently asked questions, and specifications for a nanoindentation instrument. Nanoindentation Second Edition is intended for those who are entering the field for the first time and to act as a reference for those already conversant with the technique.




Strength and Stiffness of Engineering Systems


Book Description

This book offers comprehensive coverage of topics used in engineering solutions for the stiffness and strength of physical systems, with a range of scales from micrometers to kilometers. Coverage integrates a wide array of topics into a unified text, including such subjects as plasticity, fracture, composite materials, energy approaches, and mechanics of microdevices (MEMs). This integrated and unified approach reflects the reality of modern technology with its demands to learn the fundamentals of new subjects quickly.




Mechanical Design: Theory and Methodology


Book Description

This volume, Mechanical Design: Theory and Methodology, has been put together over the past four years. Most of the work is ongoing as can be ascertained easily from the text. One can argue that this is so for any text or monograph. Any such book is only a snapshot in time, giving information about the state of knowledge of the authors when the book was compiled. The chapters have been updated and are representative of the state of the art in the field of design theory and methodology. It is barely over a decade that design as an area of study was revived, mostly at the behest of industry, government, and academic leaders. Profes sor Nam Suh, then the head of the Engineering Directorate at the National Science Foundation, provided much of the impetus for the needed effort. The results of early work of researchers, many of whom have authored chapters in this book, were fundamental in conceiving the ideas behind Design for X or DFX and concurrent engineering issues. The artificial intelli gence community had a strong influence in developing the required com puter tools mainly because the field had a history of interdisciplinary work. Psychologists, computer scientists, and engineers worked together to under stand what support tools will improve the design process. While this influ ence continues today, there is an increased awareness that a much broader community needs to be involved.




Rational and Applied Mechanics


Book Description

Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). This first volume of the textbook contains the parts “Kinematics” and “Dynamics”. The part “Kinematics” presents in detail the theory of curvilinear coordinates which is actively used in the part “Dynamics”, in particular, in the theory of constrained motion and variational principles in mechanics. For describing the motion of a system of particles, the notion of a Hertz representative point is used, and the notion of a tangent space is applied to investigate the motion of arbitrary mechanical systems. In the final chapters Hamilton-Jacobi theory is applied​ for the integration of equations of motion, and the elements of special relativity theory are presented. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.




Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering


Book Description

Production, new materials development, and mechanics are the central subjects of modern industry and advanced science. With a very broad reach across several different disciplines, selecting the most forward-thinking research to review can be a hefty task, especially for study in niche applications that receive little coverage. For those subjects, collecting the research available is of utmost importance. The Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering is an essential reference source that examines emerging obstacles in these fields of engineering and the methods and tools used to find solutions. Featuring coverage of a broad range of topics including fabricating procedures, automated control, and material selection, this book is ideally designed for academics; tribology and materials researchers; mechanical, physics, and materials engineers; professionals in related industries; scientists; and students.




Principles of Analytical System Dynamics


Book Description

A novel approach to analytical mechanics, using differential-algebraic equations, which, unlike the usual approach via ordinary differential equations, provides a direct connection to numerical methods and avoids the cumbersome graphical methods that are often needed in analysing systems. Using energy as a unifying concept and systems theory as a unifying theme, the book addresses the foundations of such disciplines as mechatronics, concurrent engineering, and systems integration, considering only discrete systems. Readers are expected to be familiar with the fundamentals of engineering mechanics, but no detailed knowledge of analytical mechanics, system dynamics, or variational calculus is required. The treatment is thus accessible to advanced undergraduates, and the interdisciplinary approach should be of interest not only to academic engineers and physicists, but also to practising engineers and applied mathematicians.