Mechanics and Geometry of Enriched Continua


Book Description

This monograph presents a comprehensive and rigorous new framework for the theoretical description and modelling of enriched continua. In other words, continua that exhibit more complex behaviour than their conventional counterparts and, in particular, multicomponent systems. It employs gradient theories, exhibiting multiple transition layers described by phase fields. As a point of departure, we account for multiple continuum kinematic processes, including motion and various phase fields. These gradient theories arise by considering various kinematic processes which are tightly linked to the level of the arbitrariness of the Euler–Cauchy cuts. The surface defining the Euler–Cauchy cut may lose its smoothness along a curve, and the curve may also lose its smoothness at a point. Additionally, we postulate the principle of virtual power on surfaces. Then, the first and second laws of thermodynamics with the power balance provide suitable and consistent choices for the constitutive equations. Finally, the complementary balances, namely the balances on surfaces, are tailored to coincide with different parts of the boundaries of the body. These surface balances are then called environmental surface balances and aid in determining suitable and consistent boundary conditions. Ultimately, the environmental surface power balance is relaxed to yield an environmental surface imbalance of powers, rendering a more general type of boundary condition. A detailed introduction sets the scene for the mathematical chapters that follow, ensuring that graduate students and newcomers can profit from the material presented.




Galilean Mechanics and Thermodynamics of Continua


Book Description

This title proposes a unified approach to continuum mechanics which is consistent with Galilean relativity. Based on the notion of affine tensors, a simple generalization of the classical tensors, this approach allows gathering the usual mechanical entities — mass, energy, force, moment, stresses, linear and angular momentum — in a single tensor. Starting with the basic subjects, and continuing through to the most advanced topics, the authors' presentation is progressive, inductive and bottom-up. They begin with the concept of an affine tensor, a natural extension of the classical tensors. The simplest types of affine tensors are the points of an affine space and the affine functions on this space, but there are more complex ones which are relevant for mechanics − torsors and momenta. The essential point is to derive the balance equations of a continuum from a unique principle which claims that these tensors are affine-divergence free.




Mechanics of Generalized Continua


Book Description

In their 1909 publication Théorie des corps déformables, Eugène and François Cosserat made a historic contribution to materials science by establishing the fundamental principles of the mechanics of generalized continua. The chapters collected in this volume showcase the many areas of continuum mechanics that grew out of the foundational work of the Cosserat brothers. The included contributions provide a detailed survey of the most recent theoretical developments in the field of generalized continuum mechanics and can serve as a useful reference for graduate students and researchers in mechanical engineering, materials science, applied physics and applied mathematics.




Continuum Mechanics Through the Twentieth Century


Book Description

This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.




Theoretical and Applied Mechanics


Book Description

The book presents the proceedings of the XXV National Congress of the Italian Association of Theoretical and Applied Mechanics (Palermo, September 2022). The topics cover theoretical, computational, experimental and technical-applicative aspects. Chapters: Fluid Mechanics, Solid Mechanics, Structural Mechanics, Mechanics of Machine, Computational Mechanics, Biomechanics, Masonry Modelling and Analysis, Dynamical Systems in Civil and Mechanical Structures, Control and Experimental Dynamics, Mechanical Modelling of Metamaterials and Periodic Structures, Novel Stochastic Dynamics, Signal Processing Techniques for Civil Engineering Applications, Vibration-based Monitoring and Dynamic Identification of Historic Constructions, Modeling and Analysis of Nanocomposites and Small-Scale Structures, Gradient Flows in Mechanics and Continuum Physics, Multibody Systems Vibration Analysis, Mechanics of Renewable Energy Systems, Mathematical Modeling and Experimental Techniques for Quantification and Prediction of Fluid Dynamic Noise, and Advanced Process Mechanics. Keywords: Fluid Mechanics, Solid Mechanics, Structural Mechanics, Mechanics of Machine, Computational Mechanics, Biomechanics, Masonry Modelling and Analysis, Dynamical Systems in Civil and Mechanical Structures, Control and Experimental Dynamics, Mechanical Modelling of Metamaterials and Periodic Structures, Novel Stochastic Dynamics, Signal Processing Techniques for Civil Engineering Applications, Vibration-based Monitoring and Dynamic Identification of Historic Constructions, Modeling and Analysis of Nanocomposites and Small-Scale Structures, Gradient Flows in Mechanics and Continuum Physics, Multibody Systems Vibration Analysis, Mechanics of Renewable Energy Systems, Mathematical Modeling and Experimental Techniques for Quantification and Prediction of Fluid Dynamic Noise, and Advanced Process Mechanics.




Discrete and Continuum Models for Complex Metamaterials


Book Description

Explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Including a comprehensive bibliography and historical review of the field, and a pedagogical mathematical treatment, it is ideal for graduate students and researchers in mechanical and civil engineering, and materials science.




Discovering the Principles of Mechanics 1600-1800


Book Description

This book assembles 21 essays on the history of mechanics and mathematical physics written by David Speiser. Covering a period from the beginning of the seventeenth century to the eighteenth, the essays discuss developments in elasticity, rigid bodies, gravitation, the principle of relativity, optics, and first principles. They examine the work of Galileo, Huygens, Newton, Leibniz, the Bernoullis, Euler, Maupertuis, and Lambert.




Geometry, Mechanics, and Control in Action for the Falling Cat


Book Description

The falling cat is an interesting theme to pursue, in which geometry, mechanics, and control are in action together. As is well known, cats can almost always land on their feet when tossed into the air in an upside-down attitude. If cats are not given a non-vanishing angular momentum at an initial instant, they cannot rotate during their motion, and the motion they can make in the air is vibration only. However, cats accomplish a half turn without rotation when landing on their feet. In order to solve this apparent mystery, one needs to thoroughly understand rotations and vibrations. The connection theory in differential geometry can provide rigorous definitions of rotation and vibration for many-body systems. Deformable bodies of cats are not easy to treat mechanically. A feasible way to approach the question of the falling cat is to start with many-body systems and then proceed to rigid bodies and, further, to jointed rigid bodies, which can approximate the body of a cat. In this book, the connection theory is applied first to a many-body system to show that vibrational motions of the many-body system can result in rotations without performing rotational motions and then to the cat model consisting of jointed rigid bodies. On the basis of this geometric setting, mechanics of many-body systems and of jointed rigid bodies must be set up. In order to take into account the fact that cats can deform their bodies, three torque inputs which may give a twist to the cat model are applied as control inputs under the condition of the vanishing angular momentum. Then, a control is designed according to the port-controlled Hamiltonian method for the model cat to perform a half turn and to halt the motion upon landing. The book also gives a brief review of control systems through simple examples to explain the role of control inputs.







Mathematical Modelling in Solid Mechanics


Book Description

This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.