Differential Equations, Mechanics, and Computation


Book Description

This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.




Mechanics: From Theory to Computation


Book Description

This collection of papers in honour of Juan-Carlos Simo cover subjects including: dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods; gravity waves on the surface of the sphere; and problems and progress in microswimming.




Mechanics: From Theory to Computation


Book Description

Starting in 1996, a sequence of articles appeared in the Journal of Nonlinear Science dedicated to the memory of one of its original editors, Juan-Carlos Simo, Applied Me chanics, Stanford University. Sadly, Juan-Carlos passed away at an early age in 1994. We lost a brilliant colleague and a wonderful person. These articles are collected in the present volume. Many of them are updated and corrected especially for this occasion. These essays are in areas of scientific interest of Juan-Carlos, including mechanics (particles, rigid bodies, fluids, elasticity, plastic ity, etc.), geometry, applied dynamics, and, of course, computation. His interests were extremely broad-he did not see boundaries between computation, mathematics, me chanics, and dynamics, and, in that sense, he ideally reflected the spirit of the journal and many of the most exciting areas of current scientific interest. Juan-Carlos was one of those select and gifted people who could cross interdisci plinary boundaries with extremely high quality and productive interactions of lasting value. His contributions, ranging from concrete engineering problems to fundamental mathematical theorems in geometric mechanics, are remarkable. In current conferences as well as in scientific books and articles, and over a wide range of subjects, one frequently hears how his ideas as well as specific results are often used and quoted-this is one indication of just how profound and fundamental his work has impacted the community.




Perspectives in Computation


Book Description

Perspectives in Computation covers three broad topics: the computation process & its limitations; the search for computational efficiency; & the role of quantum mechanics in computation.




Information, Physics, and Computation


Book Description

A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.




Computational Contact Mechanics


Book Description

Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.




Computational Contact Mechanics


Book Description

This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.




Feynman Lectures On Computation


Book Description

When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.




Theory and Computation in Hydrodynamic Stability


Book Description

Offers modern and numerical techniques for the stability of fluid flow with illustrations, an extensive bibliography, and exercises with solutions.




Computational Analysis of Randomness in Structural Mechanics


Book Description

Proper treatment of structural behavior under severe loading - such as the performance of a high-rise building during an earthquake - relies heavily on the use of probability-based analysis and decision-making tools. Proper application of these tools is significantly enhanced by a thorough understanding of the underlying theoretical and computation