Mechanics of Cellular Bone Remodeling


Book Description

Research on bone remodeling has resulted in much new information and has led to improvements in design and biomedical practices. Mechanics of Cellular Bone Remodeling: Coupled Thermal, Electrical, and Mechanical Field Effects presents a unified exploration of recent advances, giving readers a sound understanding of bone remodeling and its mathematical representation. Beginning with a description of the basic concept of bone remodeling from a mathematical point of view, the book details the development of each of the techniques and ideas. From there it progresses to the derivation and construction of multifield and cellular bone remodeling and shows how they arise naturally in response to external multifield loads. Topics include: Fundamental concepts and basic formulations for bone remodeling Applications of formulations to multifield internal bone remodeling of inhomogeneous long cylindrical bone Theory and solution of multifield surface bone remodeling A hypothetical regulation mechanism on growth factors for bone modeling and remodeling under multifield loading The RANK–RANKL–OPG pathway and formulation for analyzing the bone remodeling process A model of bone cell population dynamics for cortical bone remodeling under mechanical and pulsed electromagnetic stimulus Recent developments in experiments with bone materials Readers will benefit from the thorough coverage of general principles for each topic, followed by detailed mathematical derivations and worked examples, as well as tables and figures where appropriate. The book not only serves as a reliable reference but is also destined to attract interested readers and researchers to a field that offers fascinating and technologically important challenges.




Bone Remodeling Process


Book Description

Bone Remodeling Process: Mechanics, Biology, and Numerical Modeling provides a literature review. The first part of the book discusses bones in a normal physiological condition, bringing together the involved actors and factors reported over the past two decades, and the second discusses pathological conditions, highlighting the attack vectors of each bone disease. The third part is devoted to the mathematical descriptions of bone remodeling, formulated to develop models able to provide information that is not amenable to direct measurement, while the last part focuses on models using the finite element method in investigating bone biomechanics.This book creates an overall image of the complex communication network established between the diverse remodeling actors, based on overwhelming control evidence revealed over recent years, as well as visualizes the remodeling defects and possible treatments in each case. It also regroups the models allowing readers to analyze and assess bone mechanical and biological properties. This book details the cellular mechanisms allowing the bone to adapt its microarchitecture to the requirements of the human body, which is the main issue in bone biology and presents the evolution of mathematical modeling used in a bone computer simulation. Each chapter covers a core topic in bone biomechanics Provides a multidisciplinary view that effectively links orthopaedics, cellular biology, mechanics, and computer simulation Draws an overall image about bone biology and cell interactions, for identifying cell populations that are crucial for the remodeling process




Multiscale Mechanobiology of Bone Remodeling and Adaptation


Book Description

The book presents state-of-the-art developments in multiscale modeling and latest experimental data on multiscale mechanobiology of bone remodeling and adaptation including fracture healing applications. The multiscale models include musculoskeletal models describing bone-muscle interactions during daily activities such as walking or running, micromechanical models for estimation of bone mechanical properties, bone remodeling and adaptation models, cellular models describing the complex bone-cell interactions taking into account biochemical and biomechanical regulatory factors. Also subcellular processes are covered including arrangement of actin filaments due to mechanical loading and change of receptor configurations.




Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism


Book Description

EDITOR-IN-CHIEF: Clifford J. Rosen, M.D., Maine Medical Center Research Institute, Scarborough, Maine SENIOR ASSOCIATE EDITORS: Juliet E. Compston, M.D., FRCP, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom Jane B. Lian, Ph.D., University of Massachusetts Medical School, Worcester, Massachusetts This comprehensive yet concise handbook is an indispensable reference for the many clinicians who see patients with disorders of bone formation, metabolic bone diseases, or disorders of stone formation. It is also a crucial tool for researchers, students, and all other professionals working in the bone field. In a format designed for quick reference, it provides complete information on the symptoms, pathophysiology, diagnosis, and treatment of all common and rare bone and mineral disorders. New in this edition: detailed coverage of osteonecrosis of the jaw, more in-depth coverage of cancer and bone including new approaches to pathogenesis, diagnosis, and treatment; new approaches to anabolic therapy of osteoporosis; the latest research on Vitamin D; expanded coverage of international topics; more on the genetics of bone mass; and newer imaging techniques for the skeleton. In addition, this edition features a free, online-only appendix of medicines used to treat bone disorders and their availability around the world.




Bone Histomorphometry


Book Description




Bone Adaptation


Book Description

This book focuses on the systems biomechanics of bone remodeling that provide a multiscale platform for bone adaptation, spanning the cellular, tissue, and organ levels. The mathematical model explained in each section provides concrete examples of in silico approaches for bone adaptation. It will be immensely useful for readers interested in bone morphology and metabolism and will serve as an effective bridge connecting mechanics, cellular and molecular biology, and medical sciences. These in silico approaches towards exploring the mechanisms by which the functioning of dynamic living systems is established and maintained have potential for facilitating the efforts of graduate students and young researchers pioneering new frontiers of biomechanics.




Bone Health and Osteoporosis


Book Description

This first-ever Surgeon General's Report on bone health and osteoporosis illustrates the large burden that bone disease places on our Nation and its citizens. Like other chronic diseases that disproportionately affect the elderly, the prevalence of bone disease and fractures is projected to increase markedly as the population ages. If these predictions come true, bone disease and fractures will have a tremendous negative impact on the future well-being of Americans. But as this report makes clear, they need not come true: by working together we can change the picture of aging in America. Osteoporosis, fractures, and other chronic diseases no longer should be thought of as an inevitable part of growing old. By focusing on prevention and lifestyle changes, including physical activity and nutrition, as well as early diagnosis and appropriate treatment, Americans can avoid much of the damaging impact of bone disease and other chronic diseases. This Surgeon General's Report brings together for the first time the scientific evidence related to the prevention, assessment, diagnosis, and treatment of bone disease. More importantly, it provides a framework for moving forward. The report will be another effective tool in educating Americans about how they can promote bone health throughout their lives. This first-ever Surgeon General's Report on bone health and osteoporosis provides much needed information on bone health, an often overlooked aspect of physical health. This report follows in the tradition of previous Surgeon Generals' reports by identifying the relevant scientific data, rigorously evaluating and summarizing the evidence, and determining conclusions.




The Computational Mechanics of Bone Tissue


Book Description

This book offers a timely snapshot of computational methods applied to the study of bone tissue. The bone, a living tissue undergoing constant changes, responds to chemical and mechanical stimuli in order to maximize its mechanical performance. Merging perspectives from the biomedical and the engineering science fields, the book offers some insights into the overall behavior of this complex biological tissue. It covers three main areas: biological characterization of bone tissue, bone remodeling algorithms, and numerical simulation of bone tissue and adjacent structures. Written by clinicians and researchers, and including both review chapters and original research, the book offers an overview of the state-of-the-art in computational mechanics of bone tissue, as well as a good balance of biological and engineering methods for bone tissue analysis. An up-to-date resource for mechanical and biomedical engineers seeking new ideas, it also promotes interdisciplinary collaborations to advance research in the field.




Principles of Bone Regeneration


Book Description

Principles of Bone Regeneration is a timely publication that addresses the modern aspects of bone healing and repair. This exciting new volume details the convergence of the different experimental and clinical approaches designed for the study and treatment of bone healing in its diverse forms and under varying conditions. Bone healing is affected by a multitude of genetic, environmental, mechanical, cellular and endocrine variables which eventually lead to changes in gene expression that enhance the guided action of osteoblasts (and chondroblasts) to lay down bone that restores, or even improves, the skeletal load bearing capacity. Recent breakthroughs in understanding the regulatory aspects of bone formation and resorption, in both research and clinical arenas offer new modalities to induce, enhances and guide repair processes in bone for the benefit of millions of patients with conditions such as nonunion fractures, critical size defects, orthodontic tooth movement, periodontal bone loss, intraosseous implants and deformed bones.




Principles of Bone Biology


Book Description

Principles of Bone Biology provides the most comprehensive, authoritative reference on the study of bone biology and related diseases. It is the essential resource for anyone involved in the study of bone biology. Bone research in recent years has generated enormous attention, mainly because of the broad public health implications of osteoporosis and related bone disorders. Provides a "one-stop" shop. There is no need to search through many research journals or books to glean the information one wants...it is all in one source written by the experts in the field The essential resource for anyone involved in the study of bones and bone diseases Takes the reader from the basic elements of fundamental research to the most sophisticated concepts in therapeutics Readers can easily search and locate information quickly as it will be online with this new edition