Stability Of Gyroscopic Systems


Book Description

The motion of mechanical systems undergoing rotation about a fixed axis has been the subject of extensive studies over a few centuries. These systems are generally subject to gyroscopic forces which are associated with coriolis accelerations or mass transport and render complex dynamics.The unifying theme among topics presented in this book is the gyroscopic nature of the system equations of motion. The book represents comprehensive and detailed reviews of the state of art in four diverse application areas: flow-induced oscillations in structures, oscillations in rotating systems or rotor dynamics, dynamics of axially moving material systems, and dynamics of gyroelastic systems. The book also includes a chapter on dynamics of repetitive structures. These systems feature spatial periodicity and are generally subject to considerable gyroscopic forces. “Gyroelastic systems” and “repetitive structures” are the topics with very recent origins and are still in their infancies compared to the other examples represented in this book. Thus, the contributions on gyroelastic systems and repetitive structures are limited to only modeling, localization and linear stability analysis results.This book covers many important aspects of recent developments in various types of gyroscopic systems. Thus, at last, a comprehensive book is made available to serve as a supplement and resource for any graduate level course on elastic gyroscopic systems, as well as for a course covering the stability of mechanical systems. Moreover, the inclusion of an up-to-date bibliography attached to each chapter will make this book an invaluable text for professional reference.




Gyrodynamics and Its Engineering Applications


Book Description

Gyrodynamics and Its Engineering Applications deals with the engineering applications of gyrodynamics in a manner that stresses the physical concepts. Topics covered range from the kinematics of rigid bodies to frames of reference, along with moments and products of inertia. Gyro-verticals and the gyrodynamics of machines are also considered. Comprised of 16 chapters, this book begins with a historical background on gyroscopes and an introduction to vectors, the kinematics of a particle, and rotating systems. The emphasis is on certain fundamental ideas governing the movement of bodies in three dimensions. Motion with respect to moving axes is discussed in detail, with particular attention to the intangible Coriolis acceleration. Subsequent chapters focus on the inertial characteristics of bodies and certain dynamical theorems; the motion of a free body and of a symmetrical gyroscope under gravity; gyroscopic vibration absorbers and stabilizers; the gyro-compass; suspensions for gyroscopes; gyro-verticals; and rate and integrating gyroscopes. The book also discusses inertial navigation as well as the whirling of shafts and aircraft gyrodynamics. This monograph is intended primarily for engineers, but should also prove valuable to university teachers, research workers, and those who encounter gyroscopic problems.




Introduction to Mechanics and Symmetry


Book Description

A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.




Wave Motion, Intelligent Structures And Nonlinear Mechanics


Book Description

This book is a collection of papers on the subject of applied system dynamics and control written by experts in this field. It offers the reader a sampling of exciting research areas in three fast-growing branches: (i) Wave Motion (ii) Intelligent Structures (iii) Nonlinear Mechanics. The topics covered include flow instability, nonlinear mode localization autoparametric systems with pendula, and geometric stiffening in multibody dynamics. Mathematical methods include perturbation methods, modern control theory, nonlinear neural nets, and resonance scattering theory of Überall-Ripoche-Maze. Applications include sound-induced structural vibrations, fiber acoustic waveguides, vibration suppression of structures, linear control of gyroscopic systems, and nonlinear control of distributed systems.This book shows how applied system dynamics and control is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.




Theoretical and Applied Mechanics


Book Description

The Thirteenth International Congress of Theoretical and Applied Mechanics was held in Moscow from Monday, 21 August, to Saturday, 26 August 1972. About 2500 participants from 37 countries all over the world attended the congress that was convened by the Congress Committee of the International Union of Theoretical and Applied Mechanics. The local or ganization lay in the hands of the Organizing Committee, established by the USSR National Committee on Theoretical and Applied Mechanics. The USSR Academy of Sciences rendered partial financial help to the organization of th8 congress. The Organizing Committee was assisted by the Institute of Problems of Mechanics of the USSR Academy of Sciences, by the Research Institute for Mechanics of Moscow University, and by the Computing Center and the Institute of Applied Mathematics of the USSR Academy of Sciences. The Bureau of IUTAM had allocated a considerable sum for partial financial support of young scientists attending the congress. The Thirteenth Congress was officially opened on Monday morning at the Kremlin Palace of Congresses by Academician N. 1. Muskhelishvili, President of the Congress, and Professor W. T. Koiter, President of IUTAM. Greeting addresses were offered by: Mr. K. N. Rudnev, Minister, member of the Council of Ministers of the USSR, Academician M. V. Keldysh, President of the USSR Academy of Sciences, Mr. L. N.




Duality System in Applied Mechanics and Optimal Control


Book Description

A unified approach is proposed for applied mechanics and optimal control theory. The Hamilton system methodology in analytical mechanics is used for eigenvalue problems, vibration theory, gyroscopic systems, structural mechanics, wave-guide, LQ control, Kalman filter, robust control etc. All aspects are described in the same unified methodology. Numerical methods for all these problems are provided and given in meta-language, which can be implemented easily on the computer. Precise integration methods both for initial value problems and for two-point boundary value problems are proposed, which result in the numerical solutions of computer precision. Key Features of the text include: -Unified approach based on Hamilton duality system theory and symplectic mathematics. -Gyroscopic system vibration, eigenvalue problems. -Canonical transformation applied to non-linear systems. -Pseudo-excitation method for structural random vibrations. -Precise integration of two-point boundary value problems. -Wave propagation along wave-guides, scattering. -Precise solution of Riccati differential equations. -Kalman filtering. -HINFINITY theory of control and filter.







Vibrations in Mechanical Systems


Book Description

The familiar concept described by the word "vibrations" suggests the rapid alternating motion of a system about and in the neighbourhood of its equilibrium position, under the action of random or deliberate disturbing forces. It falls within the province of mechanics, the science which deals with the laws of equilibrium, and of motion, and their applications to the theory of machines, to calculate these vibrations and predict their effects. While it is certainly true that the physical systems which can be the seat of vibrations are many and varied, it appears that they can be studied by methods which are largely indifferent to the nature of the underlying phenomena. It is to the development of such methods that we devote this book which deals with free or induced vibrations in discrete or continuous mechanical structures. The mathematical analysis of ordinary or partial differential equations describing the way in which the values of mechanical variables change over the course of time allows us to develop various theories, linearised or non-linearised, and very often of an asymptotic nature, which take account of conditions governing the stability of the motion, the effects of resonance, and the mechanism of wave interactions or vibratory modes in non-linear systems.







NASA Scientific and Technical Reports


Book Description