Mechanics of Materials 2


Book Description

One of the most important subjects for any student of engineering or materials to master is the behaviour of materials and structures under load. The way in which they react to applied forces, the deflections resulting and the stresses and strains set up in the bodies concerned are all vital considerations when designing a mechanical component such that it will not fail under predicted load during its service lifetime.Building upon the fundamentals established in the introductory volume Mechanics of Materials 1, this book extends the scope of material covered into more complex areas such as unsymmetrical bending, loading and deflection of struts, rings, discs, cylinders plates, diaphragms and thin walled sections. There is a new treatment of the Finite Element Method of analysis, and more advanced topics such as contact and residual stresses, stress concentrations, fatigue, creep and fracture are also covered. Each chapter contains a summary of the essential formulae which are developed in the chapter, and a large number of worked examples which progress in level of difficulty as the principles are enlarged upon. In addition, each chapter concludes with an extensive selection of problems for solution by the student, mostly examination questions from professional and academic bodies, which are graded according to difficulty and furnished with answers at the end.




Engineering Mechanics 2


Book Description

Now in its second English edition, Mechanics of Materials is the second volume of a three-volume textbook series on Engineering Mechanics. It was written with the intention of presenting to engineering students the basic concepts and principles of mechanics in as simple a form as the subject allows. A second objective of this book is to guide the students in their efforts to solve problems in mechanics in a systematic manner. The simple approach to the theory of mechanics allows for the different educational backgrounds of the students. Another aim of this book is to provide engineering students as well as practising engineers with a basis to help them bridge the gaps between undergraduate studies, advanced courses on mechanics and practical engineering problems. The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The new edition is fully revised and supplemented by additional examples. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Volume 1 deals with Statics and Volume 3 treats Particle Dynamics and Rigid Body Dynamics. Separate books with exercises and well elaborated solutions are available.




Mechanics of Materials – Formulas and Problems


Book Description

This book contains the most important formulas and more than 140 completely solved problems from Mechanics of Materials and Hydrostatics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Stress - Strain - Hooke’s Law - Tension and Compression in Bars - Bending of Beams - Torsion - Energy Methods - Buckling of Bars - Hydrostatics




Mechanics of Materials


Book Description

The second edition of MECHANICS OF MATERIALS by Pytel and Kiusalaas is a concise examination of the fundamentals of Mechanics of Materials. The book maintains the hallmark organization of the previous edition as well as the time-tested problem solving methodology, which incorporates outlines of procedures and numerous sample problems to help ease students through the transition from theory to problem analysis. Emphasis is placed on giving students the introduction to the field that they need along with the problem-solving skills that will help them in their subsequent studies. This is demonstrated in the text by the presentation of fundamental principles before the introduction of advanced/special topics. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.




Mechanics II


Book Description

This textbook covers the traditional content in a mechanics of materials course, but addition material has been included. A chapter on energy methods enables the introduction of Castigliano's Theorem. Also we have included a chapter on fracture mechanics and showed methods for treating the stress singularity at crack tips.







Mechanics of Materials For Dummies


Book Description

Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!




Mechanics and Strength of Materials


Book Description

Gives a clear and thorough presentation of the fundamental principles of mechanics and strength of materials. Provides both the theory and applications of mechanics of materials on an intermediate theoretical level. Useful as a reference tool by postgraduates and researchers in the fields of solid mechanics as well as practicing engineers.




Mechanics of Materials


Book Description

Applications of the principles of mechanics of materials have increased considerably over the last 25 years. Today's routine industrial practices and techniques were only esoteric research topics just a few years ago. That research is now relevant to such diverse but commonplace applications as electronic packaging, medical implantation, geology (seismic prediction), and engineered wood products. It is in this rapidly changing world that Madhukar Vable's Mechanics of Materials takes its place as a standard text for civil, mechanical, and aerospace engineering majors, as well as for any other engineering discipline that includes mechanics of materials as a basic course. Vable's distinct pedagogical approach translates into exceptional features that enhance student participation in learning. It assumes a complementary connection between intuition, experimental observation, and mathematical generalization, suggesting that intuitive development and understanding need not be at odds with mathematical logic, rigor, and generalization. This approach also emphasizes engineering practice without distracting from the main point of the text. With strong practical examples and real-life engineering problems praised by reviewers, Mechanics of Materials promises to provide the skills and principles that students need to organize, integrate, and make sense of the flood of information emerging in the world of modern engineering. Pedagogical Features · Overview: Each chapter begins with a concise Overview that describes the motivation and major learning objective behind the chapter. · Points and Formulas to Remember: Each chapter ends with a convenient one-page synopsis of essential topics. · Plans and Comments: Every example starts with a Plan for solving the problem and ends with Comments that connect the example with previous and future concepts in the text, putting examples firmly into context within the field of mechanics. · Quick Tests: Quick Tests help students effectively diagnose their own understanding of text material. · Consolidate Your Knowledge: These boxes follow major topics and prompt students to write a synopsis of or derive a formula for material just covered, encouraging development of personal reasoning skills. · General Information: These intriguing sections connect historical development and advanced topics to material in each chapter. · "Stretch Yourself": Problems labeled "Stretch Yourself" contain important reference material that will be useful to students as future engineers. · Closure: Every chapter closes with helpful links to topics in subsequent chapters. · Formula Sheet: These useful sheets are found inside the back cover of the book for easy reference. They list equations of essential topics but include no explanations of variables and equations, making them perfect for use during exams.




Mechanics of Materials


Book Description

This book is the first to bridge the often disparate bodies of knowledge now known as applied mechanics and materials science. Using a very methodological process to introduce mechanics, materials, and design issues in a manner called "total structural design", this book seeks a solution in "total design space" Features include:* A generalized design template for solving structural design problems.* Every chapter first introduces mechanics concepts through deformation, equilibrium, and energy considerations. Then the constitutive nature of the chapter topic is presented, followed by a link between mechanics and materials concepts. Details of analysis and materials selection are subsequently discussed. * A concluding example design problem is provided in most chapters, so that students may get a sense of how mechanics and materials come together in the design of a real structure. * Exercises are provided that are germane to aerospace, civil, and mechanical engineering applications, and include both deterministic and design-type problems.* Accompanying website contains a wealth of information complementary to this text, including a set of virtual labs. Separate site areas are available for the instructor and students. - Combines theories of solid mechanics, materials science and structural design in one coherent text/reference - Covers physical scales from the atomistic to continuum mechanics - Offers a generalized structural design template