Mechanics of Materials Labs with SolidWorks Simulation 2014


Book Description

This book is designed as a software-based lab book to complement a standard textbook in a mechanics of material course, which is usually taught at the undergraduate level. This book can also be used as an auxiliary workbook in a CAE or Finite Element Analysis course for undergraduate students. Each book comes with a disc containing video demonstrations, a quick introduction to SolidWorks, and all the part files used in the book. -- back cover.




Mechanics of Materials Labs with SolidWorks Simulation 2013


Book Description

This book is designed as a software-based lab book to complement a standard textbook in a mechanics of material course, which is usually taught in undergraduate courses. This book can also be used as an auxiliary workbook in a CAE or Finite Element Analysis course for undergraduate students. Each book comes with a disc containing video demonstrations, a quick introduction to SolidWorks, and all the part files used in the book. This textbook has been carefully developed with the understanding that CAE software has developed to a point that it can be used as a tool to aid students in learning engineering ideas, concepts and even formulas. These concepts are demonstrated in each section of this book. Using the graphics-based tools of SolidWorks Simulation can help reduce the dependency on mathematics to teach these concepts substantially. The contents of this book have been written to match the contents of most mechanics of materials textbooks. There are 14 chapters in this book. Each chapter is designed as one week’s workload, consisting of 2 to 3 sections. Each section is designed for a student to follow the exact steps in that section and learn a concept or topic of mechanics of materials. Typically, each section takes 15-40 minutes to complete the exercises. Each copy of this book comes with a disc containing videos that demonstrate the steps used in each section of the book, a 121 page introduction to Part and Assembly Modeling with SolidWorks in PDF format, and all the files readers may need if they have any trouble. The concise introduction to SolidWorks pdf is designed for those students who have no experience with SolidWorks and want to feel more comfortable working on the exercises in this book. All of the same content is available for download on the book’s companion website.




Finite Element Simulations with ANSYS Workbench 17


Book Description

Finite Element Simulations with ANSYS Workbench 17 is a comprehensive and easy to understand workbook. Printed in full color, it utilizes rich graphics and step-by-step instructions to guide you through learning how to perform finite element simulations using ANSYS Workbench. Twenty seven real world case studies are used throughout the book. Many of these case studies are industrial or research projects that you build from scratch. Prebuilt project files are available for download should you run into any problems. Companion videos, that demonstrate exactly how to perform each tutorial, are also available Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads though this entire book. A typical chapter consists of 6 sections. The first two provide two step-by-step examples. The third section tries to complement the exercises by providing a more systematic view of the chapter subject. The following two sections provide more exercises. The final section provides review problems.




Mechanics of Materials Labs


Book Description




Engineering Statics Labs with SOLIDWORKS Motion 2015


Book Description

This book is designed as a software-based lab book to complement a standard textbook in an engineering statics course, which is usually taught at the undergraduate level. This book can also be used as an auxiliary workbook in a CAE or Finite Element Analysis course for undergraduate students. Each book comes with a disc containing video demonstrations, a quick introduction to SOLIDWORKS, and all the part files used in the book. This textbook has been carefully developed with the understanding that CAE software has developed to a point that it can be used as a tool to aid students in learning engineering ideas, concepts and even formulas. These concepts are demonstrated in each section of this book. Using the graphics-based tools of SOLIDWORKS Motion can help reduce the dependency on mathematics to teach these concepts substantially. The contents of this book have been written to match the contents of most statics textbooks. There are 8 chapters in this book. Each chapter is designed as one week’s workload, consisting of 2 to 3 sections. Each section is designed for a student to follow the exact steps in that section and learn a concept or topic of statics. Typically, each section takes 15-40 minutes to complete the exercises. Each copy of this book comes with a disc containing videos that demonstrate the steps used in each section of the book, a 123 page introduction to Part and Assembly Modeling with SOLIDWORKS in PDF format, and all the files readers may need if they have any trouble. The concise introduction to SOLIDWORKS PDF is designed for those students who have no experience with SOLIDWORKS and want to feel more comfortable working on the exercises in this book. All of the same content is available for download on the book’s companion website.




Engineering Dynamics Labs with SolidWorks Motion 2014


Book Description

This book is designed as a software-based lab book to complement a standard textbook in an engineering dynamics course, which is usually taught at the undergraduate level. This book can also be used as an auxiliary workbook in a CAE or Finite Element Analysis course for undergraduate students. Each book comes with a disc containing video demonstrations, a quick introduction to SolidWorks eBook, and all the part files used in the book. This textbook has been carefully developed with the understanding that CAE software has developed to a point that it can be used as a tool to aid students in learning engineering ideas, concepts and even formulas. These concepts are demonstrated in each section of this book. Using the graphics-based tools of SolidWorks Simulation can help reduce the dependency on mathematics to teach these concepts substantially. The contents of this book have been written to match the contents of most mechanics of materials textbooks. There are 11 chapters in this book. Each chapter contains two sections. Each section is designed for a student to follow the exact steps in that section and learn a concept or topic of Engineering Dynamics. Typically, each section takes 20-40 minutes to complete the exercises. Each copy of this book comes with a disc containing videos that demonstrate the steps used in each section of the book, a 123 page introduction to Part and Assembly Modeling with SolidWorks in PDF format, and all the files readers may need if they have any trouble. The concise introduction to SolidWorks PDF is designed for those students who have no experience with SolidWorks and want to feel more comfortable working on the exercises in this book. All of the same content is available for download on the book’s companion website.




Engineering Design with SolidWorks 2013 and Video Instruction


Book Description

Engineering Design with SolidWorks 2013 and Video Instruction is written to assist students, designers, engineers and professionals. The book provides a solid foundation in SolidWorks by utilizing projects with step-by-step instructions for the beginner to intermediate SolidWorks user. Explore the user interface, CommandManager, menus, toolbars and modeling techniques to create parts, assemblies and drawings in an engineering environment. Follow the step-by-step instructions and develop multiple parts and assemblies that combine machined, plastic and sheet metal components. Formulate the skills to create, modify and edit sketches and solid features. Learn the techniques to reuse features, parts and assemblies through symmetry, patterns, copied components, design tables, Bills of Materials, Custom Properties and Configurations. Address various SolidWorks analysis tools: SimulationXpress, Sustainability / SustainabilityXpress and DFMXpress and Intelligent Modeling techniques. Learn by doing, not just by reading! Desired outcomes and usage competencies are listed for each project. Know your objective up front. Follow the steps in Project 1 - 8 to achieve the design goals. Work between multiple documents, features, commands and custom properties that represent how engineers and designers utilize SolidWorks in industry. Review individual features, commands and tools with the enclosed Video Instruction DVD. The projects contain exercises. The exercises analyze and examine usage competencies. Collaborate with leading industry suppliers such as SMC Corporation of America, Boston Gear and 80/20 Inc. Collaborative information translates into numerous formats such as paper drawings, electronic files, rendered images and animations. On-line intelligent catalogs guide designers to the product that meets both their geometric requirements and performance functionality. The authors developed the industry scenarios by combining their own industry experience with the knowledge of engineers, department managers, vendors and manufacturers. These professionals are directly involved with SolidWorks every day. Their responsibilities go far beyond the creation of just a 3D model. The book is design to compliment the SolidWorks Tutorials contained in SolidWorks 2013. There are over 2.5 hours of video instructions on the enclosed DVD.




Mechanics of Materials Labs with SOLIDWORKS Simulation 2015


Book Description

This book is designed as a software-based lab book to complement a standard textbook in a mechanics of material course, which is usually taught at the undergraduate level. This book can also be used as an auxiliary workbook in a CAE or Finite Element Analysis course for undergraduate students. Each book comes with a disc containing video demonstrations, a quick introduction to SOLIDWORKS, and all the part files used in the book. This textbook has been carefully developed with the understanding that CAE software has developed to a point that it can be used as a tool to aid students in learning engineering ideas, concepts and even formulas. These concepts are demonstrated in each section of this book. Using the graphics-based tools of SOLIDWORKS Simulation can help reduce the dependency on mathematics to teach these concepts substantially. The contents of this book have been written to match the contents of most mechanics of materials textbooks. There are 14 chapters in this book. Each chapter is designed as one week’s workload, consisting of 2 to 3 sections. Each section is designed for a student to follow the exact steps in that section and learn a concept or topic of mechanics of materials. Typically, each section takes 15-40 minutes to complete the exercises. Each copy of this book comes with a disc containing videos that demonstrate the steps used in each section of the book, a 123 page introduction to Part and Assembly Modeling with SOLIDWORKS in PDF format, and all the files readers may need if they have any trouble. The concise introduction to SOLIDWORKS pdf is designed for those students who have no experience with SOLIDWORKS and want to feel more comfortable working on the exercises in this book. All of the same content is available for download on the book’s companion website.




Mechanics of Materials Laboratory Course


Book Description

This book is designed to provide lecture notes (theory) and experimental design of major concepts typically taught in most Mechanics of Materials courses in a sophomore- or junior-level Mechanical or Civil Engineering curriculum. Several essential concepts that engineers encounter in practice, such as statistical data treatment, uncertainty analysis, and Monte Carlo simulations, are incorporated into the experiments where applicable, and will become integral to each laboratory assignment. Use of common strain (stress) measurement techniques, such as strain gages, are emphasized. Application of basic electrical circuits, such as Wheatstone bridge for strain measurement, and use of load cells, accelerometers, etc., are employed in experiments. Stress analysis under commonly applied loads such as axial loading (compression and tension), shear loading, flexural loading (cantilever and four-point bending), impact loading, adhesive strength, creep, etc., are covered. LabVIEW software with relevant data acquisition (DAQ) system is used for all experiments. Two final projects each spanning 2‒3 weeks are included: (i) flexural loading with stress intensity factor determination and (ii) dynamic stress wave propagation in a slender rod and determination of the stress‒strain curves at high strain rates. The book provides theoretical concepts that are pertinent to each laboratory experiment and prelab assignment that a student should complete to prepare for the laboratory. Instructions for securing off-the-shelf components to design each experiment and their assembly (with figures) are provided. Calibration procedure is emphasized whenever students assemble components or design experiments. Detailed instructions for conducting experiments and table format for data gathering are provided. Each lab assignment has a set of questions to be answered upon completion of experiment and data analysis. Lecture notes provide detailed instructions on how to use LabVIEW software for data gathering during the experiment and conduct data analysis.




Finite Element Analysis Concepts


Book Description

Young engineers are often required to utilize commercial finite element software without having had a course on finite element theory. That can lead to computer-aided design errors. This book outlines the basic theory, with a minimum of mathematics, and how its phases are structured within a typical software. The importance of estimating a solution, or verifying the results, by other means is emphasized and illustrated. The book also demonstrates the common processes for utilizing the typical graphical icon interfaces in commercial codes. in particular, the book uses and covers the widely utilized SolidWorks solid modeling and simulation system to demonstrate applications in heat transfer, stress analysis, vibrations, buckling, and other fields. The book, with its detailed applications, will appeal to upper-level undergraduates as well as engineers new to industry.