Mechanics of Solids with Phase Changes


Book Description

The book is mainly devoted to the thermomechanical behavior of materials during solid-solid phase transformations. The physical mechanisms including diffusion, martensitic transformation and plasticity are described from material science point of view. The global behaviour is deduced from methods of classical as well as irreversible thermodynamics and continuum and micro mechanics. Mainly metals, both non ferrous and ferrous alloys but also geological problems are dealt with. Special attention is given to transformation induced plasticity and shape memory alloys. Three chapters are concerned with practical applications (heat treatment, smart structures, residual stresses).




Phase Change in Mechanics


Book Description

Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.




The Physics of Phase Transitions


Book Description

The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.




Thermomechanics of Solids and Structures


Book Description

Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems. - Provides foundational knowledge on continuum mechanics, covering kinematics, balance equations, isothermal elasticity and plasticity, variational principles, and more - Presents applications of constitutive 3D models to homogeneous and composite beams, including equations for stress and displacement estimation in thermoelastic beam problems - Reviews experimental results of thermoelastic material behavior, along with case studies to support reviews - Covers the inelastic behavior of materials at elevated temperatures, with experimental results for both monotonic and cyclic tensile tests presented - Looks at the physical mechanisms, experimental results, and constitutive modeling of creep




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o










Fundamentals of Solid-State Phase Transitions, Ferromagnetism and Ferroelectricity


Book Description

The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substatial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.







Thermal Analysis and Thermodynamic Properties of Solids


Book Description

Thermal Analysis and Thermodynamic Properties of Solids, Second Edition covers foundational principles and recent updates in the field, presenting an authoritative overview of theoretical knowledge and practical applications across several fields. Since the first edition of this book was published, large developments have occurred in the theoretical understanding of—and subsequent ability to assess and apply—principles of thermal analysis. Drawing on the knowledge of its expert author, this second edition provides fascinating insight for both new and experienced students, researchers, and industry professionals whose work is influenced or impacted by thermo analysis principles and tools. Part 1 provides a detailed introduction and guide to theoretical aspects of thermal analysis and the related impact of thermodynamics. Key terminology and concepts, the fundamentals of thermophysical examinations, thermostatics, equilibrium background, thermotics, reaction kinetics and models, thermokinetics and the exploitation of fractals are all discussed. Part 2 then goes on to discuss practical applications of this theoretical information to topics such as crystallization kinetics and glass states, thermodynamics in superconductor models, and climate change. - Includes fully updated as well as new chapters on kinetic phase diagrams, thermokinetics in DTA experiments, and crystallization kinetics - Discusses the influence of key derivatives such as thermostatics, thermodynamics, thermotics, and thermokinetics - Helps readers understand and describe reaction kinetics in solids, both in terms of simplified descriptions of the reaction mechanism models and averaged descriptions using fractals