Mechanics Problems in Geodynamics Part I


Book Description

Geodynamics concerns with the dynamics of the global motion of the earth, of the motion in the earth's interior and its interaction with surface features, together with the mechanical processes in the deformation and rupture of geological structures. Its final object is to determine the driving mechanism of these motions which is highly interdisciplinary. In preparing the basic geological, geophysical data required for a comprehensive mechanical analysis, there are also many mechanical problems involved, which means the problem is coupled in a complicated manner with geophysics, rock mechanics, seismology, structural geology etc. This topical issue is Part I of the Proceedings of an IUTAM / IASPEI Symposium on Mechanics Problems in Geodynamics held in Beijing, September 1994. It addresses different aspects of mechanics problems in geodynamics involving tectonic analyses, lithospheric structures, rheology and the fracture of earth media, mantle flow, either globally or regionally, and either by forward or inverse analyses or numerical simulation.




Mechanics Problems in Geodynamics Part II


Book Description

Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 146 (1996), No. 3/4




Mechanics problems in geodynamics. 1 (1995)


Book Description

One of two volumes of the proceedings of a symposium held in Beijing in September 1994. The 20 papers cover general global problems, mantel convection and subduction, regional tectonic problems, earthquake mechanisms, and the mechanical properties of rock fractures. Well illustrated. No index. Also published in Pageoph v.145, no.3/4. Annotation copyright by Book News, Inc., Portland, OR




Geodynamics


Book Description

A fully updated third edition of this classic textbook, containing two new chapters on numerical modelling supported by online MATLAB® codes.




Pythonic Geodynamics


Book Description

This book addresses students and young researchers who want to learn to use numerical modeling to solve problems in geodynamics. Intended as an easy-to-use and self-learning guide, readers only need a basic background in calculus to approach most of the material. The book difficulty increases very gradually, through four distinct parts. The first is an introduction to the Python techniques necessary to visualize and run vectorial calculations. The second is an overview with several examples on classical Mechanics with examples taken from standard introductory physics books. The third part is a detailed description of how to write Lagrangian, Eulerian and Particles in Cell codes for solving linear and non-linear continuum mechanics problems. Finally the last one address advanced techniques like tree-codes, Boundary Elements, and illustrates several applications to Geodynamics. The entire book is organized around numerous examples in Python, aiming at encouraging the reader to le arn by experimenting and experiencing, not by theory.




Introduction to Numerical Geodynamic Modelling


Book Description

This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.




Geodynamics of the Lithosphere


Book Description

This second edition of the important introductory text for earth scientists has been thoroughly revised and extended. It is required reading for all those interested in learning about the quantitative description of geological problems. It contains chapters on heat flow, sedimentary basin modeling, the mechanics of continental deformation, PT path modeling, geomorphology, mass transfer and more. The book is aimed at the field oriented geologist who wants to begin by learning about the quantitative description of problems. The new edition features yet more illustrations and maps as well as almost 100 corrections of scientific problems.




Computational Methods for Geodynamics


Book Description

Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.




Mechanics Problems in Geodynamics Part II


Book Description

Geodynamics concerns the dynamics of the earth's global motion, of the earth's interior motion and its interaction with surface features, together with the mechanical processes in the deformation and rupture of geological structures. Its final object is to determine the driving mechanism of these motions. It is highly interdisciplinary. In providing the basic geological, geophysical infromation required for a comprehensive mechanical analysis, there are also many mechanical problems involved, which means the problem is coupled intricately with geophysics, rock mechanics, seismology, structural geology, etc. This is Part II of the Proceedings of an IUTAM/IASPEI Symposium on Mechanics Problems in Geodynamics held in Beijing, September 1994. It discusses different aspects of mechanics problems in geodynamics involving the earth's rotation, tectonic analyses of various parts of the world, mineral physics and flow in the mantle, seismic source studies and wave propagation and application of the DDA method in tectonic analysis.




Mechanics in the Earth and Environmental Sciences


Book Description

The study of the Earth and the environment requires an understanding of the physical processes within and at the surface of the Earth. This book will allow the student to develop a broad working knowledge of mechanics and its application to the earth and environmental sciences. The mathematics are introduced at a level that assumes only an understanding of first-year calculus. The concepts are then developed to allow an understanding of the basic physics for a wide range of natural processes. These are illustrated by examples from many real situations, such as the application of the theory of flow through porous media to the study of groundwater, the viscosity of fluids to the flow of lava, and the theory of stress to the study of faults. The breadth of topics will allow students and professionals to gain an insight into the workings of many aspects of the Earth's systems.