Physics of Radiofrequency Capacitive Discharge


Book Description

This book describes the physical mechanism of high-frequency (radio-frequency) capacitive discharge (RFCD) of low and medium pressure and the properties of discharge plasma in detail. The main properties and characteristics of RFCD, the features of electric breakdown in a high-frequency field are also investigated. The properties of near-electrode layers of a spatial discharge, the nature of the electric field in them, and the processes of charge transport to electrodes are explored. The work is intended for scientists engaged in gas discharge physics and low-temperature plasmas, graduate students and students of physics, physical chemistry, and relevant specialties.




Radio-Frequency Capacitive Discharges


Book Description

The first publication of its kind in the field, this book describes comprehensively and systematically radio-frequency (rf) capacitive gas discharges of intermediate and low pressure and their application to gas laser excitation and to plasma processing. Text presents the physics underlying rf discharges along with techniques for obtaining such discharges, experimental methods and results, and theoretical and numerical modeling findings. Radio-Frequency Capacitive Discharges is written by well-known specialists in the field, authors of many theoretical and experimental works. They provide simple and clear discussions of complicated physical phenomena. A complete review on the state of the art is included. This interesting new book can be used as a textbook for students and postgraduates and as a comprehensive guidebook by specialists.




Radio-Frequency Capacitive Discharges


Book Description

The first publication of its kind in the field, this book describes comprehensively and systematically radio-frequency (rf) capacitive gas discharges of intermediate and low pressure and their application to gas laser excitation and to plasma processing. Text presents the physics underlying rf discharges along with techniques for obtaining such discharges, experimental methods and results, and theoretical and numerical modeling findings. Radio-Frequency Capacitive Discharges is written by well-known specialists in the field, authors of many theoretical and experimental works. They provide simple and clear discussions of complicated physical phenomena. A complete review on the state of the art is included. This interesting new book can be used as a textbook for students and postgraduates and as a comprehensive guidebook by specialists.




Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems


Book Description

This book includes papers presented at the Second International Conference on Electronic Engineering and Renewable Energy (ICEERE 2020), which focus on the application of artificial intelligence techniques, emerging technology and the Internet of things in electrical and renewable energy systems, including hybrid systems, micro-grids, networking, smart health applications, smart grid, mechatronics and electric vehicles. It particularly focuses on new renewable energy technologies for agricultural and rural areas to promote the development of the Euro-Mediterranean region. Given its scope, the book is of interest to graduate students, researchers and practicing engineers working in the fields of electronic engineering and renewable energy.




Physics of Radio-Frequency Plasmas


Book Description

Low-temperature radio frequency plasmas are essential in various sectors of advanced technology, from micro-engineering to spacecraft propulsion systems and efficient sources of light. The subject lies at the complex interfaces between physics, chemistry and engineering. Focusing mostly on physics, this book will interest graduate students and researchers in applied physics and electrical engineering. The book incorporates a cutting-edge perspective on RF plasmas. It also covers basic plasma physics including transport in bounded plasmas and electrical diagnostics. Its pedagogic style engages readers, helping them to develop physical arguments and mathematical analyses. Worked examples apply the theories covered to realistic scenarios, and over 100 in-text questions let readers put their newly acquired knowledge to use and gain confidence in applying physics to real laboratory situations.




Plasma Science and Technology


Book Description

Usually called the "fourth state of matter," plasmas make up more than 99% of known material. In usual terminology, this term generally refers to partially or totally ionized gas and covers a large number of topics with very different characteristics and behaviors. Over the last few decades, the physics and engineering of plasmas was experiencing a renewed interest, essentially born of a series of important applications such as thin-layer deposition, surface treatment, isotopic separation, integrated circuit etchings, medicine, etc. Plasma Science




Physics of Radio-Frequency Plasmas


Book Description

Low-temperature radio frequency plasmas are essential in various sectors of advanced technology, from micro-engineering to spacecraft propulsion systems and efficient sources of light. The subject lies at the complex interfaces between physics, chemistry and engineering. Focusing mostly on physics, this book will interest graduate students and researchers in applied physics and electrical engineering. The book incorporates a cutting-edge perspective on RF plasmas. It also covers basic plasma physics including transport in bounded plasmas and electrical diagnostics. Its pedagogic style engages readers, helping them to develop physical arguments and mathematical analyses. Worked examples apply the theories covered to realistic scenarios, and over 100 in-text questions let readers put their newly acquired knowledge to use and gain confidence in applying physics to real laboratory situations.







Principles of Plasma Discharges and Materials Processing


Book Description

A new edition of this industry classic on the principles of plasma processing Plasma-based technology and materials processes have been central to the revolution of the last half-century in micro- and nano-electronics. From anisotropic plasma etching on microprocessors, memory, and analog chips, to plasma deposition for creating solar panels and flat-panel displays, plasma-based materials processes have reached huge areas of technology. As key technologies scale down in size from the nano- to the atomic level, further developments in plasma materials processing will only become more essential. Principles of Plasma Discharges and Materials Processing is the foundational introduction to the subject. It offers detailed information and procedures for designing plasma-based equipment and analyzing plasma-based processes, with an emphasis on the abiding fundamentals. Now fully updated to reflect the latest research and data, it promises to continue as an indispensable resource for graduate students and industry professionals in a myriad of technological fields. Readers of the third edition of Principles of Plasma Discharges and Materials Processing will also find: Extensive figures and tables to facilitate understanding A new chapter covering the recent development of processes involving high-pressure capacitive discharges New subsections on discharge and processing chemistry, physics, and diagnostics Principles of Plasma Discharges and Materials Processing is ideal for professionals and process engineers in the field of plasma-assisted materials processing with experience in the field of science or engineering. It is the premiere world-wide basic text for graduate courses in the field.




Plasma Applications for Material Modification


Book Description

This book is an up-to-date review of the most important plasma-based techniques for material modification, from microelectronics to biological materials and from fusion plasmas to atmospheric ones. Each its technical chapters is written by long-experienced, internationally recognised researchers. The book provides a deep and comprehensive insight into plasma technology and its associated elemental processes and is illustrated throughout with excellent figures and references to complement each section. Although some of the topics covered can be traced back several decades, care has been taken to emphasize the most recent findings and expected evolution. The first time the word ‘plasma’ appeared in print in a scientific text related to the study of electrical discharges in gases was 1928, when Irving Langmuir published his article ‘Oscillations in Ionized Gases’. It was the baptism of the predominant state of matter in the known universe (it is estimated that up to 99% of matter is plasma), although not on earth, where the conditions of pressure and temperature make normal the states of matter (solid, liquid, gas) which, in global terms, are exotic. It is enough to add energy to a solid (in the form of heat or electromagnetic radiation) to go into the liquid state, from which gas is obtained through an additional supply of energy. If we continue adding energy to the gas, we will partially or totally ionise it and reach a new state of matter, plasma, made up of free electrons, atoms and molecules (electrically neutral particles) and ions (endowed with a positive or a negative electric charge).