Stress Responses in Plants


Book Description

This collection discusses the variety of specific molecular reactions by means of which plants respond to physiological and toxic stress conditions. It focuses on the characterization of the molecular mechanisms that underlie the induction of toxicity and the triggered responses and resistances. The nine chapters, all written by prominent researchers, examine heavy metal toxicity, aluminum toxicity, arsenic toxicity, salt toxicity, drought stress, light stress, temperature stress, flood stress and UV-B stress. In addition, information on the fundamentals of stress responses and resistance mechanisms is provided. The book addresses researchers and students working in the fields of plant physiology and biochemistry.​




Handbook of Arsenic Toxicology


Book Description

Throughout history, arsenic has been used as an effective and lethal poison. Today, arsenic continues to present a real threat to human health all over the world, as it contaminates groundwater and food supplies. Handbook of Arsenic Toxicology presents the latest findings on arsenic, its chemistry, its sources and its acute and chronic effects on the environment and human health. The book takes readings systematically through the target organs, before detailing current preventative and counter measures. This reference enables readers to effectively assess the risks related to arsenic, and provide a comprehensive look at arsenic exposure, toxicity and toxicity prevention. - Brings together current findings on the effects of arsenic on the environment and human health - Includes state-of-the-art techniques in arsenic toxicokinetics, speciation and molecular mechanisms - Provides all the information needed for effective risk assessment, prevention and countermeasure




Mechanisms of Arsenic Toxicity and Tolerance in Plants


Book Description

Arsenic is likely the most talked-about metalloid in the modern world because of its toxic effects on both animal and plants. Further, arsenic pollution is now producing negative impacts on food security, especially in many south Asian countries. Since plants are a major food source, their adaptation to As-rich environments is essential, as is being informed about recent findings on multifarious aspects of the mechanisms of arsenic toxicity and tolerance in plants. Although numerous research works and review articles have been published in journals, annual reviews and as book chapters, to date there has been no comprehensive book on this topic. This book contains 19 informative chapters on arsenic chemistry, plant uptake, toxicity and tolerance mechanisms, as well as approaches to mitigation. Readers will be introduced to the latest findings on plant responses to arsenic toxicity, various tolerance mechanisms, and remediation techniques. As such, the book offers a timely and valuable resource for a broad audience, including plant scientists, soil scientists, environmental scientists, agronomists, botanists and molecular biologists.




Brassica Improvement


Book Description

Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world’s third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.




Arsenic & Rice


Book Description

Rice is the staple food for half of the world’s population. Consumption of rice is the major exposure route globally to the class one, non-threshold carcinogen inorganic arsenic. This book explains the sources of arsenic to paddy soils and the biogeochemical processes and plant physiological attributes of paddy soil-rice ecosystems that lead to high concentrations of arsenic in rice grain. It presents the global pattern of arsenic concentration and speciation in rice, discusses human exposures to inorganic arsenic from rice and the resulting health risks. It also highlights particular populations that have the highest rice consumptions, which include Southern and South East Asians, weaning babies, gluten intolerance sufferers and those consuming rice milk. The book also presents the information of arsenic concentration and speciation in other major crops and outlines approaches for lowering arsenic in rice grain and in the human diet through agronomic management.




Plant Ecophysiology


Book Description

Twenty-nine, prominent, international researchers provide contributions which deal with understanding the basic ecophysiological and molecular principles governing the functioning of plant systems in relation to their environment. Divided into two headings: biotic and abiotic; the first consists of abiotic, natural environmental factors--light, ultraviolet radiation, chilling and freezing, high temperatures, drought, flooding, salt and trace metals. The latter half presents anthropogenic aspects including allelochemicals, herbicides, polyamines, air pollutants, carbon dioxide, radioisotopes and fire.




Soil Remediation and Plants


Book Description

The soil is being contaminated continuously by a large number of pollutants. Among them, heavy metals are an exclusive group of toxicants because they are stable and difficult to disseminate into non-toxic forms. The ever-increasing concentrations of such pollutants in the soil are considered serious threats toward everyone's health and the environment. Many techniques are used to clean, eliminate, obliterate or sequester these hazardous pollutants from the soil. However, these techniques can be costly, labor intensive, and often disquieting. Phytoremediation is a simple, cost effective, environmental friendly and fast-emerging new technology for eliminating toxic heavy metals and other related soil pollutants. Soil Remediation and Plants provides a common platform for biologists, agricultural engineers, environmental scientists, and chemists, working with a common aim of finding sustainable solutions to various environmental issues. The book provides an overview of ecosystem approaches and phytotechnologies and their cumulative significance in relation to solving various environmental problems. - Identifies the molecular mechanisms through which plants are able to remediate pollutants from the soil - Examines the challenges and possibilities towards the various phytoremediation candidates - Includes the latest research and ongoing progress in phytoremediation




Sustainable Agriculture in the Era of Climate Change


Book Description

Under ongoing climate changes, natural and cultivated habitats of major crops are being continuously disturbed. Such conditions impose and exacerbate abiotic and biotic stressors. Drought, salinity, flood, cold, heat, heavy metals, metalloids, oxidants, irradiation, etc. are important abiotic stressors, while diseases and infections caused by plant pathogens, such as fungal agents, bacteria and viruses, are major biotic stresses. In many instances, stresses have become the major limiting factor for agricultural productivity and exert detrimental role on growth and yield of the crops. To help feed an ever increasing world population and to ensure global food security, concerted efforts from scientists and researchers have identified strategies to manage and mitigate the impacts of climate-induced stresses. This book, summarizing their findings, is aimed at crop improvement beyond such kind of barriers, by agronomic practices (genetics, breeding, phenotyping, etc.) and biotechnological applications, including molecular markers, QTL mapping, genetic engineering, transgenesis, tissue culture, various 'omics' technologies and gene editing. It will cover a wide range of topics under environmental challenges, agronomy and agriculture processes, and biotechnological approaches. Additionally, fundamental mechanisms and applied information on stress responses and tolerance will be discussed. This book highlights problems and offers proper solutions for crop stress management with recent information and up-to-date citations. We believe this book is suitable for scientists, researchers and students working in the fields of agriculture, plant science, environmental biology and biotechnology.




Metalloids in Plants


Book Description

Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.




Heavy Metal Stress in Plants


Book Description

Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. Metal toxicity causes multiple direct and indirect effects in plants that concern practically all physiological functions. The main purpose of this book is to present comprehensive and concise information on recent advances in the field of metal transport and how genetic diversity affects heavy metal transport in plants. Other key futures of the book are related to metal toxicity and detoxification mechanisms, biochemical tools for HM remediation processes, molecular mechanisms for HM detoxification, how metallomics and metalloproteomics are affected by heavy metal stress in plants, and the role of ROS metabolism in the alleviation of heavy metals. Some chapters also focus on recent developments in the field of phytoremediation. Overall the book presents in-depth information and the most essential advances in the field of heavy metal toxicity in plants in recent years.