Mechanistic-Empirical Pavement Design Guide (MEPDG) Method Implemented to Estimate Damage in Flexible and Rigid Pavements


Book Description

The implementation of the Empirical-Mechanistic Pavement Design Guide (MEPDG) method for flexible and rigid pavements requires numerous input parameters. Most of these parameters can be easily determined while some require best estimates that are usually extracted from available literature. This thesis identifies the most critical input parameters in terms of their effects on the damage of pavements and their influence on the determination of the number of corrective maintenance cycles to be performed during the design life of pavements. It was found that for flexible pavement, change in the average monthly temperature by as little as results in large differences in the number of corrective maintenance cycles. Also, consistently with simple mechanics concepts, pavements on stiffer foundations performed better under the load and hence, required fewer number of the corrective maintenance cycles than those founded on more flexible soils. Also, variations in truck weights affected the outcome in terms of the estimated number of corrective maintenance cycles for flexible pavement. Hence, better estimates of the number of corrective maintenance cycles can be obtained when the analysis was based on larger numbers of truck samples. On the contrary, no significant difference in the final estimation of the number of corrective maintenance cycles was found for rigid pavements even when the average monthly temperatures were increased or decreased by as much as . Moreover, no major difference was observed when a larger sample of trucks was used as input for the analysis. Similarly, change in ambient temperature which is directly related to the differential temperature on the top and the bottom of the slab that may lead to the curling of the slab and faulting, was found not to be critical. Similar to the results obtained for flexible pavements, rigid pavement with stiffer foundation properties performed better in terms of the number of corrective maintenance cycles as they required fewer corrective maintenance cycles.







Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide


Book Description

This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.




Mechanistic-empirical Pavement Design Guide Implementation Plan


Book Description

As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.




AASHTO Guide for Design of Pavement Structures, 1993


Book Description

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.




Implementation of the Mechanistic-empirical Pavement Design Guide in Utah


Book Description

"Highway agencies across the nation are moving towards implementation of the new AASHTO Mechanistic- Empirical Pavement Design Guide (MEPDG) for pavement design. The objective of this project was to implement the MEPDG into the daily operations of the Utah Department of Transportation (UDOT). The implementation of the MEPDG as a UDOT standard required modifications in some UDOT pavement design protocols (i.e., lab testing procedures, equipment, and protocols, traffic data reporting, software issues, design output interpretation, and others). A key requirement is validation of the MEPDG's nationally calibrated pavement distress and smoothness prediction models when applied under Utah conditions and performing local calibration if needed. This was accomplished using data from Long Term Pavement Performance (LTPP) projects located in Utah and UDOT pavement management system (PMS) pavement sections. The nationally calibrated MEPDG models were evaluated. With the exception of the new hot-mix asphalt (HMA) pavement total rutting model, all other models were found to be reasonable. The rutting model was locally calibrated to increase goodness of fit and remove significant bias. Due to the nature of the data used in model validation, it is recommended that further MEPDG model validation be accomplished in the future using a database that contains HMA pavement and jointed plain concrete pavement (JPCP) exhibiting moderate to severe deterioration. This report represents Phase II of the UDOT MEPDG implementation study and builds on the Phase I study report completed in 2005 for UDOT. The Draft User's Guide for UDOT Mechanistic-Empirical Pavement Design (UDOT Research Report No. UT-09.11a, dated October 2009) incorporates the findings of this report as inputs and pavement design guidelines for Utah for use by UDOT's pavement design engineers during trial implementation of the MEPDG"--Technical report documentation p.




Implementation of the Mechanistic-Empirical Pavement Design Guide for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota


Book Description

The recently introduced Mechanistic-Empirical Pavement Design Guide (MEPDG) and related software provide capabilities for the analysis and performance prediction of different types of flexible and rigid pavements. An important aspect of this process is the evaluation of the performance prediction models and sensitivity of the predicted distresses to various input parameters for local conditions and, if necessary, re-calibration of the performance prediction models. To achieve these objectives, the Minnesota Department of Transportation (MnDOT) and the Local Road Research Board (LRRB) initiated a study "Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota." This report presents the results of the evaluation of default inputs, identification of deficiencies in the software, sensitivity analysis, and comparison of results to the expected limits for typical Minnesota site conditions, a wide range of pavement design features (e.g. layer thickness, material properties, etc), and the effects of different parameters on predicted pavement distresses. Since the sensitivity analysis was conducted over a span of several years and the MEPDG software underwent significant modifications, especially for flexible pavements, various versions of the MEPDG software were run. Performance prediction models of the latest version of the MEPDG 1.003 were evaluated and modified or recalibrated to reduce bias and error in performance prediction for Minnesota conditions.




Flexible Pavement Design


Book Description

Abstract: The new Mechanistic-Empirical Pavement Design Guide (MEPDG) provides a state- of-the-art and practice pavement design procedure that eradicates the AASHTO 1993 empirical design procedure deficiencies. Huge advancements with respect to traffic input, material characterization and environmental impact are incorporated in the MEPDG. The AASHTO 1993 design procedure is based on empirical equations derived from the AASHO Road Test conducted in the late 1950's in a test track in Ottawa, Illinois. The test provided very useful information for the design of pavement at that time. However, with the present advancement in materials and dramatic increase in traffic volumes, this empirical design procedure started to show massive drawbacks. The MEPDG is a more comprehensive design procedure that incorporates sophisticated models for pavement response calculation, material properties variations with respect to environmental conditions and pavement performance predictions. The mechanistic part of the design procedure is the pavement response calculation and the empirical part of the method is the pavement performance prediction. Incorporating these models allows the MEPDG of producing pavement design sections that are cost-effective and perform better than those designed using the AASHTO 1993 design procedure for a given life span. With the initial introduction of the MEPDG in 2004, almost every State Highway Agency (SHA) in the United States and several road authorities around the world exerted efforts to understand and plan to implement the MEPDG according to their own local conditions. It was hence found necessary to explore the new design procedure according to Egyptian local conditions. The objectives of the research is to prepare a body of accurate and readily usable environmental data for Egypt for MEPDG input, compare the effectiveness of both design methods and assess the sensitivity of MEPDG predicted performance with respect to variations in inputs. Weather data files for major Egyptian cities were extracted from available data sources and prepared for direct input in the MEPDG. The preparation of data was done using a computer application especially developed in this research program to comprehensively and rationally complete this task. A comparative study was then done between the two design methods. Five pavement sections were designed using the AASHTO 1993 design procedure and then evaluated using the MEPDG for three traffic levels. These five sections were chosen to best represent the majority of Egypt. A sensitivity analysis was then conducted to investigate the predicted behavior of fatigue cracking and rutting with respect to variations in environmental conditions, traffic levels, AC layer thickness and properties, granular base (GB) layer thickness and subgrade strength. Comparing both design methods revealed that pavements designed under the AASHTO 1993 do not perform equally at the end of their design life. Terminal Present Serviceability Index (PSI) values are different for different traffic levels and locations. Predicted fatigue cracking and rutting showed a similar trend to terminal PSI values. The AASHTO 1993 was also found to over-estimate pavement layers thicknesses. Predicted fatigue cracking showed high sensitivity to design inputs under the scope of the study. Environmental conditions and traffic loading were also found to be the most influential input parameters on the selected pavement performance indices. Unexpected results for predicted rutting lead to further investigation and MEDPG rutting prediction model was evaluated with respect to an Egyptian rutting prediction model. Rutting prediction model adopted by MEPDG produced lower values for permanent strain compare to the Egyptian rutting model and further calibration for the MEPDG rutting prediction model was found necessary.




Concrete Pavement Design, Construction, and Performance


Book Description

Addressing the interactions between the different design and construction variables and techniques this book illustrates best practices for constructing economical, long life concrete pavements. The book proceeds in much the same way as a pavement construction project. First, different alternatives for concrete pavement solutions are outlined. The desired performance and behaviour parameters are identified. Next, appropriate materials are outlined and the most suitable concrete proportions determined. The design can be completed, and then the necessary construction steps for translating the design into a durable facility are carried out. Although the focus reflects highways as the most common application, special features of airport, industrial, and light duty pavements are also addressed. Use is made of modeling and performance tools such as HIPERPAV and LTPP to illustrate behavior and performance, along with some case studies. As concrete pavements are more complex than they seem, and the costs of mistakes or of over-design can be high, this is a valuable book for engineers in both the public and private sectors.




Pavement Design and Materials


Book Description

A comprehensive, state-of-the-art guide to pavement design and materials With innovations ranging from the advent of SuperpaveTM, the data generated by the Long Term Pavement Performance (LTPP) project, to the recent release of the Mechanistic-Empirical pavement design guide developed under NCHRP Study 1-37A, the field of pavement engineering is experiencing significant development. Pavement Design and Materials is a practical reference for both students and practicing engineers that explores all the aspects of pavement engineering, including materials, analysis, design, evaluation, and economic analysis. Historically, numerous techniques have been applied by a multitude of jurisdictions dealing with roadway pavements. This book focuses on the best-established, currently applicable techniques available. Pavement Design and Materials offers complete coverage of: The characterization of traffic input The characterization of pavement bases/subgrades and aggregates Asphalt binder and asphalt concrete characterization Portland cement and concrete characterization Analysis of flexible and rigid pavements Pavement evaluation Environmental effects on pavements The design of flexible and rigid pavements Pavement rehabilitation Economic analysis of alternative pavement designs The coverage is accompanied by suggestions for software for implementing various analytical techniques described in these chapters. These tools are easily accessible through the book’s companion Web site, which is constantly updated to ensure that the reader finds the most up-to-date software available.