Chalcogenide-Based Nanomaterials as Photocatalysts


Book Description

Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. - Provides information on the development of novel chalcogenide-based nanomaterials - Outlines the fundamentals of chalcogenides-based photocatalysis - Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials




Electrochemistry of Metal Chalcogenides


Book Description

The author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications. Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion. Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.




Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems


Book Description

Multifunctional Hybrid Nanomaterials for Sustainable Agrifood and Ecosystems shows how hybrid nanomaterials (HNMs) are being used to enhance agriculture, food and environmental science. The book discusses the synthesis and characterization of HNMs before exploring agrifoods and environmental functions. It shows how novel HNMs are being used for the detection and separation of heavy metal ions, for destroying and sensing of insecticides, in managed release fertilizer and pesticide formulations, plant protection, plant promotions, purification, detection, and to control mycotoxins. Further, the book describes the use of silica-based total nanosystems, carbon nanotubes, nanocellulose-based, and polymer nanohybrids for agricultural and biological applications. This book is an important reference source for materials scientists, engineers and food scientists who want to gain a greater understanding on how multifunctional nanomaterials are being used for a range of agricultural and environmental applications.




Nanomaterials Chemistry


Book Description

With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.




Spintronic 2D Materials


Book Description

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book.




Ordered Porous Solids


Book Description

The developments in the area of ordered nanoporous solids have moved beyond the traditional catalytic and separation uses and given rise to a wide variety of new applications in different branches of chemistry, physics, material science, etc. The activity in this area is due to the outstanding properties of nanoporous materials that have attracted the attention of researchers from different communities. However, recent achievements in a specific field often remain out of the focus of collaborating communities. This work summarizes the latest developments and prospects in the area of ordered porous solids, including synthetic layered materials (clays), microporous zeolite-type materials, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbon, etc. All aspects, from synthesis via comprehensive characterization to the advanced applications of ordered porous materials, are presented. The chapters are written by leading experts in their respective fields with an emphasis on recent progress and the state of the art. - Summarizes the latest developments in the field of ordered nanoporous solids - Presents state-of-the-art coverage of applications related to porous solids - Incorporates 28 contributions from experts across the disciplines




Applications of Chalcogenides: S, Se, and Te


Book Description

This book introduces readers to a wide range of applications for elements in Group 16 of the periodic table, such as, optical fibers for communication and sensing, X-ray imaging, electrochemical sensors, data storage devices, biomedical applications, photovoltaics and IR detectors, the rationale for these uses, the future scope of their applications, and expected improvements to existing technologies. Following an introductory section, the book is broadly divided into three parts—dealing with Sulfur, Selenium, and Tellurium. The sections cover the basic structure of the elements and their compounds in bulk and nanostructured forms; properties that make these useful for various applications, followed by applications and commercial products. As the global technology revolution necessitates the search for new materials and more efficient devices in the electronics and semiconductor industry, Applications of Chalcogenides: S, Se, and Te is an ideal book for a wide range of readers in industry, government and academic research facilities looking beyond silicon for materials used in the electronic and optoelectronic industry as well as biomedical applications.




Anisotropic Particle Assemblies


Book Description

Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assembly, directed assembly under external fields, theoretical and numerical multi-scale modeling, anisotropic materials with novel interfacial properties, and the applications of these topics in renewable energy, intelligent micro-machines, and biomedical fields are discussed in depth. Contributors to this book are internationally known experts who have been actively studying each of these subfields for many years.This book is an invaluable reference for researchers and chemical engineers who are working at the intersection of physics, chemistry, chemical engineering, and materials science and engineering. It educates students, trains the next generation of researchers, and stimulates continuous development in this rapidly emerging area for new materials and innovative technologies. - Provides comprehensive coverage on new developments in anisotropic particles - Features chapters written by emerging and leading experts in each of the subfields - Contains information that will appeal to a broad spectrum of professionals, including but not limited to chemical engineers, chemists, physicists, and materials scientists and engineers - Serves as both a reference book for researchers and a textbook for graduate students




Photocatalytic Hydrogen Evolution


Book Description

Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.




Carbon Nanomaterial-Based Adsorbents for Water Purification


Book Description

The deterioration of water quality and unavailability of drinkable water are pressing challenges worldwide. The removal of toxic organic and inorganic pollutants from water is vital for a clean environment, as a response to water scarcity. Adsorption-based water technologies are among the most widely used because of their high efficiency and low cost, without relying on a complex infrastructure. In recent years, carbon nanomaterials (CNMs), such as graphene and derivatives, carbon nanotubes, carbon nanofibers, nanoporous carbon, fullerenes, graphitic carbon nitride, and nanodiamonds have been extensively exploited as adsorbents due to their extraordinary surface properties, ease of modification, large surface area, controlled structural varieties, high chemical stability, porosity, low density, ease of regeneration, and reusability. This book provides a thorough overview of the state of the art in carbon nanomaterials as they are used for adsorption applications in water purifications, as well as addressing their toxicological challenges. This volume primarily explores the fundamentals of adsorption, its mechanical aspects, synthesis and properties of CNMs, and adsorption performances of CNMs and their nanocomposites with organic and inorganic materials. Structural engineering and activation processes produce materials with enhanced adsorptive properties and separation efficiencies. Furthermore, the formation of CNMs with 2D and 3D macro-and microstructures and high porosities is a potential approach to improve adsorption performances and extend CNM use at the industrial level. The book also addresses important issues regarding these adsorbents that potentially affect future research and industrial applications of carbon-based nanoadsorbents in water security. - Presents advances in multifunctional 3D superstructures of carbon nanomaterials and their composites for adsorption applications - Outlines the fundamentals on synthesis and characterization techniques of carbon-based nanostructures and their composites - Assesses the major toxicological challenges in using nanostructured materials as adsorbents for water purification