Mechatronic System Control, Logic, and Data Acquisition


Book Description

The first comprehensive and up-to-date reference on mechatronics, Robert Bishop's The Mechatronics Handbook was quickly embraced as the gold standard in the field. With updated coverage on all aspects of mechatronics, The Mechatronics Handbook, Second Edition is now available as a two-volume set. Each installment offers focused coverage of a particular area of mechatronics, supplying a convenient and flexible source of specific information. This seminal work is still the most exhaustive, state-of-the-art treatment of the field available. Focusing on the most rapidly changing areas of mechatronics, this book discusses signals and systems control, computers, logic systems, software, and data acquisition. It begins with coverage of the role of control and the role modeling in mechatronic design, setting the stage for the more fundamental discussions on signals and systems. The volume reflects the profound impact the development of not just the computer, but the microcomputer, embedded computers, and associated information technologies and software advances. The final sections explore issues surrounding computer software and data acquisition. Covers modern aspects of control design using optimization techniques from H2 theory Discusses the roles of adaptive and nonlinear control and neural networks and fuzzy systems Includes discussions of design optimization for mechatronic systems and real-time monitoring and control Focuses on computer hardware and associated issues of logic, communication, networking, architecture, fault analysis, embedded computers, and programmable logic controllers




Mechatronic System Control, Logic, and Data Acquisition


Book Description

The first comprehensive and up-to-date reference on mechatronics, Robert Bishop's The Mechatronics Handbook was quickly embraced as the gold standard in the field. With updated coverage on all aspects of mechatronics, The Mechatronics Handbook, Second Edition is now available as a two-volume set. Each installment offers focused coverage of a particular area of mechatronics, supplying a convenient and flexible source of specific information. This seminal work is still the most exhaustive, state-of-the-art treatment of the field available. Focusing on the most rapidly changing areas of mechatronics, this book discusses signals and systems control, computers, logic systems, software, and data acquisition. It begins with coverage of the role of control and the role modeling in mechatronic design, setting the stage for the more fundamental discussions on signals and systems. The volume reflects the profound impact the development of not just the computer, but the microcomputer, embedded computers, and associated information technologies and software advances. The final sections explore issues surrounding computer software and data acquisition. Covers modern aspects of control design using optimization techniques from H2 theory Discusses the roles of adaptive and nonlinear control and neural networks and fuzzy systems Includes discussions of design optimization for mechatronic systems and real-time monitoring and control Focuses on computer hardware and associated issues of logic, communication, networking, architecture, fault analysis, embedded computers, and programmable logic controllers




The Mechatronics Handbook - 2 Volume Set


Book Description

The first comprehensive reference on mechatronics, The Mechatronics Handbook was quickly embraced as the gold standard in the field. From washing machines, to coffeemakers, to cell phones, to the ubiquitous PC in almost every household, what, these days, doesn’t take advantage of mechatronics in its design and function? In the scant five years since the initial publication of the handbook, the latest generation of smart products has made this even more obvious. Too much material to cover in a single volume Originally a single-volume reference, the handbook has grown along with the field. The need for easy access to new material on rapid changes in technology, especially in computers and software, has made the single volume format unwieldy. The second edition is offered as two easily digestible books, making the material not only more accessible, but also more focused. Completely revised and updated, Robert Bishop’s seminal work is still the most exhaustive, state-of-the-art treatment of the field available.




The Mechatronics Handbook - 2 Volume Set


Book Description

Mechatronics has evolved into a way of life in engineering practice, and indeed pervades virtually every aspect of the modern world. As the synergistic integration of mechanical, electrical, and computer systems, the successful implementation of mechatronic systems requires the integrated expertise of specialists from each of these areas. De







Mechatronics


Book Description

Mechatronics has evolved into a way of life in engineering practice, and it pervades virtually every aspect of the modern world. In chapters drawn from the bestselling and now standard engineering reference, The Mechatronics Handbook, this book introduces the vibrant field of mechatronics and its key elements: physical system modeling; sensors and actuators; signals and systems; computers and logic systems; and software and data acquisition. These chapters, written by leading academics and practitioners, were carefully selected and organized to provide an accessible, general outline of the subject ideal for non-specialists. Mechatronics: An Introduction first defines and organizes the key elements of mechatronics, exploring design approach, system interfacing, instrumentation, control systems, and microprocessor-based controllers and microelectronics. It then surveys physical system modeling, introducing MEMS along with modeling and simulation. Coverage then moves to essential elements of sensors and actuators, including characteristics and fundamentals of time and frequency, followed by control systems and subsystems, computer hardware, logic, system interfaces, communication and computer networking, data acquisition, and computer-based instrumentation systems. Clear explanations and nearly 200 illustrations help bring the subject to life. Providing a broad overview of the fundamental aspects of the field, Mechatronics: An Introduction is an ideal primer for those new to the field, a handy review for those already familiar with the technology, and a friendly introduction for anyone who is curious about mechatronics.




Instrument Engineers' Handbook, Volume 3


Book Description

Instrument Engineers' Handbook – Volume 3: Process Software and Digital Networks, Fourth Edition is the latest addition to an enduring collection that industrial automation (AT) professionals often refer to as the "bible." First published in 1970, the entire handbook is approximately 5,000 pages, designed as standalone volumes that cover the measurement (Volume 1), control (Volume 2), and software (Volume 3) aspects of automation. This fourth edition of the third volume provides an in-depth, state-of-the-art review of control software packages used in plant optimization, control, maintenance, and safety. Each updated volume of this renowned reference requires about ten years to prepare, so revised installments have been issued every decade, taking into account the numerous developments that occur from one publication to the next. Assessing the rapid evolution of automation and optimization in control systems used in all types of industrial plants, this book details the wired/wireless communications and software used. This includes the ever-increasing number of applications for intelligent instruments, enhanced networks, Internet use, virtual private networks, and integration of control systems with the main networks used by management, all of which operate in a linked global environment. Topics covered include: Advances in new displays, which help operators to more quickly assess and respond to plant conditions Software and networks that help monitor, control, and optimize industrial processes, to determine the efficiency, energy consumption, and profitability of operations Strategies to counteract changes in market conditions and energy and raw material costs Techniques to fortify the safety of plant operations and the security of digital communications systems This volume explores why the holistic approach to integrating process and enterprise networks is convenient and efficient, despite associated problems involving cyber and local network security, energy conservation, and other issues. It shows how firewalls must separate the business (IT) and the operation (automation technology, or AT) domains to guarantee the safe function of all industrial plants. This book illustrates how these concerns must be addressed using effective technical solutions and proper management policies and practices. Reinforcing the fact that all industrial control systems are, in general, critically interdependent, this handbook provides a wide range of software application examples from industries including: automotive, mining, renewable energy, steel, dairy, pharmaceutical, mineral processing, oil, gas, electric power, utility, and nuclear power.




Control of Mechatronic Systems


Book Description

A practical methodology for designing integrated automation control for systems and processes Implementing digital control within mechanical-electronic (mechatronic) systems is essential to respond to the growing demand for high-efficiency machines and processes. In practice, the most efficient digital control often integrates time-driven and event-driven characteristics within a single control scheme. However, most of the current engineering literature on the design of digital control systems presents discrete-time systems and discrete-event systems separately. Control Of Mechatronic Systems: Model-Driven Design And Implementation Guidelines unites the two systems, revisiting the concept of automated control by presenting a unique practical methodology for whole-system integration. With its innovative hybrid approach to the modeling, analysis, and design of control systems, this text provides material for mechatronic engineering and process automation courses, as well as for self-study across engineering disciplines. Real-life design problems and automation case studies help readers transfer theory to practice, whether they are building single machines or large-scale industrial systems. Presents a novel approach to the integration of discrete-time and discrete-event systems within mechatronic systems and industrial processes Offers user-friendly self-study units, with worked examples and numerous real-world exercises in each chapter Covers a range of engineering disciplines and applies to small- and large-scale systems, for broad appeal in research and practice Provides a firm theoretical foundation allowing readers to comprehend the underlying technologies of mechatronic systems and processes Control Of Mechatronic Systems is an important text for advanced students and professionals of all levels engaged in a broad range of engineering disciplines.




Mechatronic Systems and Process Automation


Book Description

The book discusses the concept of process automation and mechatronic system design, while offering a unified approach and methodology for the modeling, analysis, automation and control, networking, monitoring, and sensing of various machines and processes from single electrical-driven machines to large-scale industrial process operations. This step-by-step guide covers design applications from various engineering disciplines (mechanical, chemical, electrical, computer, biomedical) through real-life mechatronics problems and industrial automation case studies with topics such as manufacturing, power grid, cement production, wind generator, oil refining, incubator, etc. Provides step-by-step procedures for the modeling, analysis, control and automation, networking, monitoring, and sensing of single electrical-driven machines to large-scale industrial process operations. Presents model-based theory and practice guidelines for mechatronics system and process automation design. Includes worked examples in every chapter and numerous end-of-chapter real-life exercises, problems, and case studies.




Mechatronic Systems, Sensors, and Actuators


Book Description

This book covers the key elements of physical systems modeling, sensors and actuators, signals and systems, computers and logic systems, and software and data acquisition. It describes mathematical models of the mechanical, electrical, and fluid subsystems that comprise many mechatronic systems.