Book Description
Integrates the statistical computing package MINITAB(tm) into an Introductory Statistics course, using Statistics by McClave/Sincich, 9/e.
Author : Vukov
Publisher : Prentice Hall
Page : 196 pages
File Size : 36,77 MB
Release : 2002-02-20
Category : Mathematics
ISBN : 9780130669223
Integrates the statistical computing package MINITAB(tm) into an Introductory Statistics course, using Statistics by McClave/Sincich, 9/e.
Author :
Publisher :
Page : 148 pages
File Size : 36,57 MB
Release : 1999
Category : Mathematical statistics
ISBN : 9780072326055
Author : Rehman M. Khan
Publisher : John Wiley & Sons
Page : 715 pages
File Size : 24,3 MB
Release : 2013-01-28
Category : Mathematics
ISBN : 1118307526
Six Sigma statistical methodology using Minitab Problem Solving and Data Analysis using Minitab presents example-based learning to aid readers in understanding how to use MINITAB 16 for statistical analysis and problem solving. Each example and exercise is broken down into the exact steps that must be followed in order to take the reader through key learning points and work through complex analyses. Exercises are featured at the end of each example so that the reader can be assured that they have understood the key learning points. Key features: Provides readers with a step by step guide to problem solving and statistical analysis using Minitab 16 which is also compatible with version 15. Includes fully worked examples with graphics showing menu selections and Minitab outputs. Uses example based learning that the reader can work through at their pace. Contains hundreds of screenshots to aid the reader, along with explanations of the statistics being performed and interpretation of results. Presents the core statistical techniques used by Six Sigma Black Belts. Contains examples, exercises and solutions throughout, and is supported by an accompanying website featuring the numerous example data sets. Making Six Sigma statistical methodology accessible to beginners, this book is aimed at numerical professionals, students or academics who wish to learn and apply statistical techniques for problem solving, process improvement or data analysis whilst keeping mathematical theory to a minimum.
Author : Minitab Inc. Staff
Publisher :
Page : 156 pages
File Size : 22,35 MB
Release : 1998-09-14
Category : Computers
ISBN : 9780534360092
The new version of this software and MINITAB "mini-manual" explains the fundamentals of using MINITAB. It is only available when bundled with another Duxbury textbook.
Author : Minitab Inc
Publisher :
Page : 154 pages
File Size : 29,48 MB
Release : 1998
Category : Mathematical statistics
ISBN : 9780534360092
A student version of the professional statistical software package that imports and exports data, processes it, and describes, analyzes, and displays it in graphic format.
Author : Tilman M. Davies
Publisher : No Starch Press
Page : 833 pages
File Size : 41,23 MB
Release : 2016-07-16
Category : Computers
ISBN : 1593276516
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Author : Rehman M. Khan
Publisher : John Wiley & Sons
Page : 500 pages
File Size : 29,63 MB
Release : 2013-04-01
Category : Mathematics
ISBN : 1118307577
Six Sigma statistical methodology using Minitab Problem Solving and Data Analysis using Minitab presents example-based learning to aid readers in understanding how to use MINITAB 16 for statistical analysis and problem solving. Each example and exercise is broken down into the exact steps that must be followed in order to take the reader through key learning points and work through complex analyses. Exercises are featured at the end of each example so that the reader can be assured that they have understood the key learning points. Key features: Provides readers with a step by step guide to problem solving and statistical analysis using Minitab 16 which is also compatible with version 15. Includes fully worked examples with graphics showing menu selections and Minitab outputs. Uses example based learning that the reader can work through at their pace. Contains hundreds of screenshots to aid the reader, along with explanations of the statistics being performed and interpretation of results. Presents the core statistical techniques used by Six Sigma Black Belts. Contains examples, exercises and solutions throughout, and is supported by an accompanying website featuring the numerous example data sets. Making Six Sigma statistical methodology accessible to beginners, this book is aimed at numerical professionals, students or academics who wish to learn and apply statistical techniques for problem solving, process improvement or data analysis whilst keeping mathematical theory to a minimum.
Author : D.R. Helsel
Publisher : Elsevier
Page : 539 pages
File Size : 17,93 MB
Release : 1993-03-03
Category : Science
ISBN : 0080875084
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Author : Paul G. Mathews
Publisher : Quality Press
Page : 521 pages
File Size : 33,59 MB
Release : 2004-07-07
Category : Business & Economics
ISBN : 0873895878
Most of the classic DOE books were written before DOE software was generally available, so the technical level that they assumed was that of the engineer or scientist who had to write his or her own analysis software. In this practical introduction to DOE, guided by the capabilities of the common software packages, Paul Mathews presents the basic types and methods of designed experiments appropriate for engineers, scientists, quality engineers, and Six Sigma Black Belts and Master Black Belts. Although instructions in the use of Minitab are detailed enough to provide effective guidance to a new Minitab user, the book is still general enough to be very helpful to users of other DOE software packages. Every chapter contains many examples with detailed solutions including extensive output from Minitab.
Author : Issa Bass
Publisher : McGraw Hill Professional
Page : 382 pages
File Size : 28,19 MB
Release : 2009-01-05
Category : Technology & Engineering
ISBN : 0071626212
Effectively Execute Lean Six Sigma Projects using SigmaXL and Minitab Written by a Six Sigma Master Black Belt and a Ph.D., this practical guide to Lean Six Sigma project execution follows the DMAIC (Define, Measure, Analyze, Improve, and Control) roadmap. The many real-world examples used in the book offer in-depth theoretical analyses and are implemented using the two most popular statistical software suites--SigmaXL and Minitab. This expert resource covers Lean topics ranging from basic data analysis to complex design of experiments and statistical process control. Harness the power of SigmaXL and Minitab and enable sustained positive operational results throughout your organization with help from this authoritative guide. Lean Six Sigma Using SigmaXL and Minitab explains how to: Define the project goals, project manager, value statement, stakeholders, and risk Schedule tasks using the Gantt chart, critical path analysis, and program evaluation and review technique Capture the voice of internal and external customers Assess the cost of quality Gather data and measure process performance Perform process capabilities analysis Apply Lean Six Sigma metrics to determine baseline performance Implement analysis techniques such as Pareto analysis, value stream mapping, failure mode and effect analysis (FMEA), and regression analysis Identify constraints via factorial experiments, and implement process improvements Monitor production performance using statistical process control