Asymptotics and Mellin-Barnes Integrals


Book Description

Asymptotics and Mellin-Barnes Integrals, first published in 2001, provides an account of the use and properties of a type of complex integral representation that arises frequently in the study of special functions typically of interest in classical analysis and mathematical physics. After developing the properties of these integrals, their use in determining the asymptotic behaviour of special functions is detailed. Although such integrals have a long history, the book's account includes recent research results in analytic number theory and hyperasymptotics. The book also fills a gap in the literature on asymptotic analysis and special functions by providing a thorough account of the use of Mellin-Barnes integrals that is otherwise not available in other standard references on asymptotics.




Mellin-Barnes Integrals


Book Description

In this book, the authors discuss the Mellin-Barnes representation of complex multidimensional integrals. Experiments frontiered by the High-Luminosity Large Hadron Collider at CERN and future collider projects demand the development of computational methods to achieve the theoretical precision required by experimental setups. In this regard, performing higher-order calculations in perturbative quantum field theory is of paramount importance. The Mellin-Barnes integrals technique has been successfully applied to the analytic and numerical analysis of integrals connected with virtual and real higher-order perturbative corrections to particle scattering. Easy-to-follow examples with the supplemental online material introduce the reader to the construction and the analytic, approximate, and numeric solution of Mellin-Barnes integrals in Euclidean and Minkowskian kinematic regimes. It also includes an overview of the state-of-the-art software packages for manipulating and evaluating Mellin-Barnes integrals. The book is meant for advanced students and young researchers to master the theoretical background needed to perform perturbative quantum field theory calculations.




Analytic Tools for Feynman Integrals


Book Description

The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice. This book supersedes the author’s previous Springer book “Evaluating Feynman Integrals” and its textbook version “Feynman Integral Calculus.” Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added: One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, “Applied Asymptotic Expansions in Momenta and Masses,” by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes.




Mellin-Transform Method for Integral Evaluation


Book Description

This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.




Evaluating Feynman Integrals


Book Description

The problem of evaluating Feynman integrals over loop momenta has existed from the early days of perturbative quantum field theory. Although a great variety of methods for evaluating Feynman integrals has been developed over a span of more than fifty years, this book is a first attempt to summarize them. Evaluating Feynman Integrals characterizes the most powerful methods, in particular those used for recent, quite sophisticated calculations, and then illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples.




The Hypergeometric Approach to Integral Transforms and Convolutions


Book Description

The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions et c. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These ques tions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general construc tions like the Meijer's G-function and the Fox's H-function.




Basic Hypergeometric Series


Book Description

Significant revision of classic reference in special functions.




The H-Function


Book Description

TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.




Special Functions


Book Description

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.




Electromagnetic Wave Propagation in Turbulence


Book Description

Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.