A Pattern Language


Book Description

You can use this book to design a house for yourself with your family; you can use it to work with your neighbors to improve your town and neighborhood; you can use it to design an office, or a workshop, or a public building. And you can use it to guide you in the actual process of construction. After a ten-year silence, Christopher Alexander and his colleagues at the Center for Environmental Structure are now publishing a major statement in the form of three books which will, in their words, "lay the basis for an entirely new approach to architecture, building and planning, which will we hope replace existing ideas and practices entirely." The three books are The Timeless Way of Building, The Oregon Experiment, and this book, A Pattern Language. At the core of these books is the idea that people should design for themselves their own houses, streets, and communities. This idea may be radical (it implies a radical transformation of the architectural profession) but it comes simply from the observation that most of the wonderful places of the world were not made by architects but by the people. At the core of the books, too, is the point that in designing their environments people always rely on certain "languages," which, like the languages we speak, allow them to articulate and communicate an infinite variety of designs within a forma system which gives them coherence. This book provides a language of this kind. It will enable a person to make a design for almost any kind of building, or any part of the built environment. "Patterns," the units of this language, are answers to design problems (How high should a window sill be? How many stories should a building have? How much space in a neighborhood should be devoted to grass and trees?). More than 250 of the patterns in this pattern language are given: each consists of a problem statement, a discussion of the problem with an illustration, and a solution. As the authors say in their introduction, many of the patterns are archetypal, so deeply rooted in the nature of things that it seemly likely that they will be a part of human nature, and human action, as much in five hundred years as they are today.







Numerical and Computer Methods in Structural Mechanics


Book Description

Numerical and Computer Methods in Structural Mechanics is a compendium of papers that deals with the numerical methods in structural mechanics, computer techniques, and computer capabilities. Some papers discus the analytical basis of the computer technique most widely used in software, that is, the finite element method. This method includes the convergence (in terms of variation principles) isoparametrics, hybrid models, and incompatible displacement models. Other papers explain the storage or retrieval of data, as well as equation-solving algorithms. Other papers describe general-purpose structural mechanics programs, alternatives to, and extension of the usual finite element approaches. Another paper explores nonlinear, dynamic finite element problems, and a direct physical approach to determine finite difference models. Special papers explain structural mechanics used in computing, particularly, those related to integrated data bases, such as in the Structures Oriented Exchange System of the Office of Naval Research and the integrated design of tanker structures. Other papers describe software and hardware capabilities, for example, in ship design, fracture mechanics, biomechanics, and crash safety. The text is suitable for programmers, computer engineers, researchers, and scientists involved in materials and industrial design.










Library of Congress Subject Headings


Book Description







Structural Design in Wood


Book Description

The prime purpose of this book is to serve as a design is of considerable value in helping the classroom text for the engineering or architec student make the transition from the often sim ture student. It will, however, also be useful to plistic classroom exercises to problems of the designers who are already familiar with design real world. Problems for solution by the student in other materials (steel, concrete, masonry) but follow the same idea. The first problems in each need to strengthen, refresh, or update their capa subject are the usual textbook-type problems, bility to do structural design in wood. Design but in most chapters these are followed by prob principles for various structural materials are lems requiring the student to make structural similar, but there are significant differences. planning decisions as well. The student may be This book shows what they are. required, given a load source, to find the magni The book has features that the authors believe tude of the applied loads and decide upon a set it apart from other books on wood structural grade of wood. Given a floor plan, the student design. One of these is an abundance of solved may be required to determine a layout of struc examples. Another is its treatment of loads. This tural members. The authors have used most of book will show how actual member loads are the problems in their classes, so the problems computed. The authors have found that students, have been tested.