Membrane Computing Models: Implementations


Book Description

The theoretical basis of membrane computing was established in the early 2000s with fundamental research into the computational power, complexity aspects and relationships with other (un)conventional computing paradigms. Although this core theoretical research has continued to grow rapidly and vigorously, another area of investigation has since been added, focusing on the applications of this model in many areas, most prominently in systems and synthetic biology, engineering optimization, power system fault diagnosis and mobile robot controller design. The further development of these applications and their broad adoption by other researchers, as well as the expansion of the membrane computing modelling paradigm to other applications, call for a set of robust, efficient, reliable and easy-to-use tools supporting the most significant membrane computing models. This work provides comprehensive descriptions of such tools, making it a valuable resource for anyone interested in membrane computing models.




Membrane Computing


Book Description

Membrane computing is an unconventional model of computation associated with a new computing paradigm. The field of membrane computing was initiated in 1998 by the author of this book; it is a branch of natural computing inspired by the structure and functioning of the living cell and devises distributed parallel computing models in the form of membrane systems. This book is the first monograph surveying the new field in a systematic and coherent way. It presents the central notions and results: the main classes of P systems, the main results about their computational power and efficiency, a complete bibliography, and a series of open problems and research topics.




Applications of Membrane Computing


Book Description

Membrane computing is a branch of natural computing which investigates computing models abstracted from the structure and functioning of living cells and from their interactions in tissues or higher-order biological structures. The models considered, called membrane systems (P systems), are parallel, distributed computing models, processing multisets of symbols in cell-like compartmental architectures. In many applications membrane systems have considerable advantages – among these are their inherently discrete nature, parallelism, transparency, scalability and nondeterminism. In dedicated chapters, leading experts explain most of the applications of membrane computing reported so far, in biology, computer science, computer graphics and linguistics. The book also contains detailed reviews of the software tools used to simulate P systems.




Real-life Applications with Membrane Computing


Book Description

This book thoroughly investigates the underlying theoretical basis of membrane computing models, and reveals their latest applications. In addition, to date there have been no illustrative case studies or complex real-life applications that capitalize on the full potential of the sophisticated membrane systems computational apparatus; gaps that this book remedies. By studying various complex applications – including engineering optimization, power systems fault diagnosis, mobile robot controller design, and complex biological systems involving data modeling and process interactions – the book also extends the capabilities of membrane systems models with features such as formal verification techniques, evolutionary approaches, and fuzzy reasoning methods. As such, the book offers a comprehensive and up-to-date guide for all researchers, PhDs and undergraduate students in the fields of computer science, engineering and the bio-sciences who are interested in the applications of natural computing models.




Membrane Computing


Book Description

This book constitutes the thoroughly refereed post-proceedings of the International Workshop on Membrane Computing, WMC 2003, held in Tarragona, Spain, in July 2003. The 26 revised full papers presented were carefully selected during two rounds of reviewing and improvement. All current topics in the emerging area of membrane computing are addressed, ranging from issues in mathematics and theoretical computer science to (potential) applications in biology, bioinformatics, sorting, ranking, linguistics, and computer graphics; several implementations and simulations on computers, computer networks, and reconfigurable hardware are presented too.




Membrane Computing


Book Description

For anyone needing to keep up to date with all the latest research in the field of membrane computing, this book will come as a breath of fresh air. It is the extended post-proceedings of the 8th International Workshop on Membrane Computing, held in June 2007. A total of 27 revised papers are presented. All of them have been through two rounds of reviewing. Special attention has been paid to the interaction of membrane computing with biology and computer science.




Applications of Membrane Computing in Systems and Synthetic Biology


Book Description

Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying them, present different applications of Membrane Systems to Biology. Deterministic, non-deterministic and stochastic systems paired with different algorithms and methodologies show the full potential of this framework. The book is addressed to researchers interested in applications of discrete biological models and the interplay between Membrane Systems and other approaches to analyze complex systems.




Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)


Book Description

The book is a collection of high quality peer reviewed research papers presented in Seventh International Conference on Bio-Inspired Computing (BIC-TA 2012) held at ABV-IIITM Gwalior, India. These research papers provide the latest developments in the broad area of "Computational Intelligence". The book discusses wide variety of industrial, engineering and scientific applications of nature/bio-inspired computing and presents invited papers from the inventors/originators of novel computational techniques.




Robotic Systems: Concepts, Methodologies, Tools, and Applications


Book Description

Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.




Handbook of Parallel Computing


Book Description

The ability of parallel computing to process large data sets and handle time-consuming operations has resulted in unprecedented advances in biological and scientific computing, modeling, and simulations. Exploring these recent developments, the Handbook of Parallel Computing: Models, Algorithms, and Applications provides comprehensive coverage on a