Membrane Proteomics


Book Description

The membranes surrounding cells and organelles constitute their interface with the local environment. The functions of membrane proteins include cell/cell and cell/extracellular matrix recognition, the reception and transduction of extracellular signals, and the tra- port of proteins, solutes and water molecules. Abnormal membrane protein expression has profound biological effects and may, for example, underlie phenotypic and functional differences between normal and tumour cells. Moreover the accessibility, particularly of plasma proteins traversing the plasma membrane of cells, makes them of particular ut- ity to the therapeutic intervention in disease. Indeed, it is estimated that of all currently licensed pharmaceuticals, approximately 70% target proteins resident in the plasma m- brane. In theory, unbiased technologies such as proteomics have the power to de?ne patterns of membrane protein expression characteristic of distinct states of cellular development, differentiation or disease, and thereby identify novel markers of, or targets for intervention in, disease. However, although about 25% of open reading frames in fully sequenced genomes are estimated to encode integral membrane proteins, global analysis of membrane protein expression has proved problematic. Membrane protein analysis poses unique challenges at the level of extraction, solubilization, and separation in particular, and to a lesser extent of identi?cation and quantitation. These challenges have, however, fostered creativity, in- vation, and technical advances, many of which are brought together in Membrane P- teomics.




Membrane Proteomics


Book Description

The membranes surrounding cells and organelles constitute their interface with the local environment. The functions of membrane proteins include cell/cell and cell/extracellular matrix recognition, the reception and transduction of extracellular signals, and the tra- port of proteins, solutes and water molecules. Abnormal membrane protein expression has profound biological effects and may, for example, underlie phenotypic and functional differences between normal and tumour cells. Moreover the accessibility, particularly of plasma proteins traversing the plasma membrane of cells, makes them of particular ut- ity to the therapeutic intervention in disease. Indeed, it is estimated that of all currently licensed pharmaceuticals, approximately 70% target proteins resident in the plasma m- brane. In theory, unbiased technologies such as proteomics have the power to de?ne patterns of membrane protein expression characteristic of distinct states of cellular development, differentiation or disease, and thereby identify novel markers of, or targets for intervention in, disease. However, although about 25% of open reading frames in fully sequenced genomes are estimated to encode integral membrane proteins, global analysis of membrane protein expression has proved problematic. Membrane protein analysis poses unique challenges at the level of extraction, solubilization, and separation in particular, and to a lesser extent of identi?cation and quantitation. These challenges have, however, fostered creativity, in- vation, and technical advances, many of which are brought together in Membrane P- teomics.




Membrane Protein Protocols


Book Description

Knowledge of the three-dimensional structure of a protein is absolutely required for the complete understanding of its function. The spatial orientation of amino acids in the active site of an enzyme demonstrates how substrate specificity is defined, and assists the medicinal chemist in the design of s- cific, tight-binding inhibitors. The shape and contour of a protein surface hints at its interaction with other proteins and with its environment. Structural ana- sis of multiprotein complexes helps to define the role and interaction of each individual component, and can predict the consequences of protein mutation or conditions that promote dissociation and rearrangement of the complex. Determining the three-dimensional structure of a protein requires milligram quantities of pure material. Such quantities are required to refine crystallization conditions for X-ray analysis, or to overcome the sensitivity limitations of NMR spectroscopy. Historically, structural determination of proteins was limited to those expressed naturally in large amounts, or derived from a tissue or cell source inexpensive enough to warrant the use of large quantities of cells. H- ever, with the advent of the techniques of modern gene expression, many p- teins that are constitutively expressed in minute amounts can become accessible to large-scale purification and structural analysis.




The Proteomics Protocols Handbook


Book Description

Hands-on researchers describe in step-by-step detail 73 proven laboratory methods and bioinformatics tools essential for analysis of the proteome. These cutting-edge techniques address such important tasks as sample preparation, 2D-PAGE, gel staining, mass spectrometry, and post-translational modification. There are also readily reproducible methods for protein expression profiling, identifying protein-protein interactions, and protein chip technology, as well as a range of newly developed methodologies for determining the structure and function of a protein. The bioinformatics tools include those for analyzing 2D-GEL patterns, protein modeling, and protein identification. All laboratory-based protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.




Membrane Physiology


Book Description

Membrane Physiology (Second Edition) is a soft-cover book containing portions of Physiology of Membrane Disorders (Second Edition). The parent volume contains six major sections. This text encompasses the first three sections: The Nature of Biological Membranes, Methods for Studying Membranes, and General Problems in Membrane Biology. We hope that this smaller volume will be helpful to individuals interested in general physiology and the methods for studying general physiology. THOMAS E. ANDREOLI JOSEPH F. HOFFMAN DARRELL D. FANESTIL STANLEY G. SCHULTZ vii Preface to the Second Edition The second edition of Physiology of Membrane Disorders represents an extensive revision and a considerable expansion of the first edition. Yet the purpose of the second edition is identical to that of its predecessor, namely, to provide a rational analysis of membrane transport processes in individual membranes, cells, tissues, and organs, which in tum serves as a frame of reference for rationalizing disorders in which derangements of membrane transport processes playa cardinal role in the clinical expression of disease. As in the first edition, this book is divided into a number of individual, but closely related, sections. Part V represents a new section where the problem of transport across epithelia is treated in some detail. Finally, Part VI, which analyzes clinical derangements, has been enlarged appreciably.







Proteomics


Book Description

This volume aims to provide protocols on a wide range of biochemical methods, analytical approaches, and bioinformatics tools developed to analyze the proteome. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Proteomics: Methods and Protocols aims to ensure successful results in the further study of this vital field.




Production of Membrane Proteins


Book Description

Designed as a research-level guide to current strategies and methods of membrane protein production on the small to intermediate scale, this practice-oriented book provides detailed, step-by-step laboratory protocols as well as an explanation of the principles behind each method, together with a discussion of its relative advantages and disadvantages. Following an introductory section on current challenges in membrane protein production, the book goes on to look at expression systems, emerging methods and approaches, and protein specific considerations. Case studies illustrate how to select or sample the optimal production system for any desired membrane protein, saving both time and money on the laboratory as well as the technical production scale. Unique in its coverage of "difficult" proteins with large membrane-embedded domains, proteins from extremophiles, peripheral membrane proteins, and protein fragments.




Structural Genomics on Membrane Proteins


Book Description

While the genomic revolution has quickly led to the deposit of more than 30,000 structures in the protein data bank (PDB), less than one percent of those contributions represent membrane proteins despite the fact that membrane proteins constitute some 20 percent of all proteins. This discrepancy becomes significantly troublesome when it is coupled




Membrane Proteins Production for Structural Analysis


Book Description

This book updates the latest development in production, stabilization and structural analysis techniques of membrane proteins. This field has made significant advances since the elucidation of the first 3-D structure of a recombinant G Protein Coupled Receptor (GPCR), rhodopsin, with the structure of several more GPCRs having been solved in the past five years. In fact, the 2012 Nobel Prize in Chemistry was awarded for groundbreaking discoveries on the inner workings of GPCRs. This book is essential reading for all researchers, biochemists and crystallographers working with membrane proteins, who are interested by the structural characterization of their favorite protein and who wish to follow the expression, migration, modifications and recycling of a membrane protein.