Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis


Book Description

Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher, company and operators to understand and get insights into the state-of-the-art PRO technologies.




Osmosis Engineering


Book Description

Osmosis Engineering provides a comprehensive overview of the state-of-the-art surrounding osmosis-based research and industrial applications. The book covers the underpinning theories, technology developments and commercial applications. Sections discuss innovative and advanced membranes and modules for osmosis separation processes (e.g., reverse osmosis, forward osmosis, pressure retarded osmosis, osmotic membrane distillation), different application of these osmosis separation processes for energy and water separation, such as the treatment of radioactive waste, oily wastewater and heavy metal removal, draw solutions, pretreatment technologies, fouling effects, the use of renewable energy driven osmotic processes, computational, environmental and economic studies, and more. - Covers state-of-the-art osmotic engineering technologies and applications - Presents multidisciplinary topics in engineered osmosis, including both fundamental and applied EO concepts - Includes major challenges such as fouling mitigation, membrane development, pre-treatment and energy usage




Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis


Book Description

Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher, company and operators to understand and get insights into the state-of-the-art PRO technologies.




Pressure Retarded Osmosis


Book Description

Pressure Retarded Osmosis: Renewable Energy Generation and Recovery offers the first comprehensive resource on this method of generating renewable energy. Dr. Khaled Touati and the team of editors combine their expertise with contributions from other leaders in the field to create this well-rounded resource, which discusses and analyses this novel method of creating a controllable renewable energy. The promises of the PRO technique are first clearly presented and explained, and the authors then provide a comprehensive analysis of the issues that remain such as Concentration Polarization, Membrane Deformation, and Reverse Salt Diffusion. Possible solutions to these issues which often restrict industrial implementation are then discussed to mitigate these detrimental effects, and there is also an emphasis on the recovery of energy from desalination processes using PRO, which is able to reduce energy consumption and make it more economically and environmentally efficient.




Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation


Book Description

Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation focuses on the various types of membrane- based salinity gradient processes that can be applied for desalination. Topics cover salinity gradient processes for desalination, such as Forward Osmosis (FO) and Pressure Retarded Osmosis (PRO), with chapters selected exclusively from a number of world-leading experts in various disciplines and from different continents. Sections include discussions on the theoretical and fundamental approaches to salinity gradient processes, various types of membrane materials and development, i.e., flat sheet and hollow fiber, various salinity water sources for an economically feasible process, and large-scale applications. Finally, the book focuses on economically feasible process optimization when both operational and capital costs are considered.




IRC-SET 2020


Book Description

This book highlights leading-edge research in multi-disciplinary areas in Physics, Engineering, Medicine, and Health care, from the 6th IRC Conference on Science, Engineering and Technology (IRC-SET 2020) held in July 2020 at Singapore. The papers were shortlisted after extensive rounds of reviews by a panel of esteemed individuals who are pioneers in their domains. The book also contains excerpts of the speeches by eminent personalities who graced the occasion, thereby providing written documentation of the event.




Modeling in Membranes and Membrane-Based Processes


Book Description

The book Modeling in Membranes and Membrane-Based Processes is based on the idea of developing a reference which will cover most relevant and “state-of-the-art” approaches in membrane modeling. This book explores almost every major aspect of modeling and the techniques applied in membrane separation studies and applications. This includes first principle-based models, thermodynamics models, computational fluid dynamics simulations, molecular dynamics simulations, and artificial intelligence-based modeling for membrane separation processes. These models have been discussed in light of various applications ranging from desalination to gas separation. In addition, this breakthrough new volume covers the fundamentals of polymer membrane pore formation mechanisms, covering not only a wide range of modeling techniques, but also has various facets of membrane-based applications. Thus, this book can be an excellent source for a holistic perspective on membranes in general, as well as a comprehensive and valuable reference work. Whether a veteran engineer in the field or lab or a student in chemical or process engineering, this latest volume in the “Advances in Membrane Processes” is a must-have, along with the first book in the series, Membrane Processes, also available from Wiley-Scrivener.




Osmotically Driven Membrane Processes


Book Description

Osmotically driven membrane processes (ODMPs) including forward osmosis (FO) and pressure-retarded osmosis (PRO) have attracted increasing attention in fields such as water treatment, desalination, power generation, and life science. In contrast to pressure-driven membrane processes, e.g., reverse osmosis, which typically employs applied high pressure as driving force, ODMPs take advantages of naturally generated osmotic pressure as the sole source of driving force. In light of this, ODMPs possess many advantages over pressure-driven membrane processes. The advantages include low energy consumption, ease of equipment maintenance, low capital investment, high salt rejection, and high water flux. In the past decade, over 300 academic papers on ODMPs have been published in a variety of application fields. The number of such publications is still rapidly growing. The ODMPs' approach, fabrications, recent development and applications in wastewater treatment, power generation, seawater desalination, and gas absorption are presented in this book.




Process Intensification and Integration for Sustainable Design


Book Description

Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.




Advances in Membrane Technologies


Book Description

Membrane technologies are currently the most effective and sustainable methods utilized in diversified water filtration, wastewater treatment, as well as industrial and sustainable energy applications. This book covers essential subsections of membrane separation and bioseparation processes from the perspectives of technical innovation, novelty, and sustainability. The book offers a comprehensive overview of the latest improvements and concerns with respect to membrane fouling remediation techniques, issues of bioincompatibility for biomedical applications, and various subareas of membrane separation processes, which will be an efficient resource for engineers.