Memory and the Computational Brain


Book Description

Memory and the Computational Brain offers a provocative argument that goes to the heart of neuroscience, proposing that the field can and should benefit from the recent advances of cognitive science and the development of information theory over the course of the last several decades. A provocative argument that impacts across the fields of linguistics, cognitive science, and neuroscience, suggesting new perspectives on learning mechanisms in the brain Proposes that the field of neuroscience can and should benefit from the recent advances of cognitive science and the development of information theory Suggests that the architecture of the brain is structured precisely for learning and for memory, and integrates the concept of an addressable read/write memory mechanism into the foundations of neuroscience Based on lectures in the prestigious Blackwell-Maryland Lectures in Language and Cognition, and now significantly reworked and expanded to make it ideal for students and faculty




The Computational Brain


Book Description

"The Computational Brain addresses a broad audience: neuroscientists, computer scientists, cognitive scientists, and philosophers. It is written for both the expert and novice. A basic overview of neuroscience and computational theory is provided, followed by a study of some of the most recent and sophisticated modeling work in the context of relevant neurobiological research. Technical terms are clearly explained in the text, and definitions are provided in an extensive glossary. The appendix contains a précis of neurobiological techniques."--Jacket.




Computational Explorations in Cognitive Neuroscience


Book Description

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.




Computational Models of Brain and Behavior


Book Description

A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.




Computational Cognitive Neuroscience


Book Description

Introduction to computer modeling of the brain, to understand how people think. Networks of interacting neurons produce complex emergent behavior including perception, attention, motor control, learning, memory, language, and executive functions (motivation, decision making, planning, etc).




Models of the Mind


Book Description

The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate – and how those communications create thoughts, perceptions and actions. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes, including decision-making, sensory processing, quantifying memory, and more. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain – the individual neuron – through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. In addition, Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.




Gateway to Memory


Book Description

This book is for students and researchers who have a specific interest in learning and memory and want to understand how computational models can be integrated into experimental research on the hippocampus and learning. It emphasizes the function of brain structures as they give rise to behavior, rather than the molecular or neuronal details. It also emphasizes the process of modeling, rather than the mathematical details of the models themselves. The book is divided into two parts. The first part provides a tutorial introduction to topics in neuroscience, the psychology of learning and memory, and the theory of neural network models. The second part, the core of the book, reviews computational models of how the hippocampus cooperates with other brain structures -- including the entorhinal cortex, basal forebrain, cerebellum, and primary sensory and motor cortices -- to support learning and memory in both animals and humans. The book assumes no prior knowledge of computational modeling or mathematics. For those who wish to delve more deeply into the formal details of the models, there are optional "mathboxes" and appendices. The book also includes extensive references and suggestions for further readings.




Brain, Vision, Memory


Book Description

In these engaging tales describing the growth of knowledge about the brain—from the early Egyptians and Greeks to the Dark Ages and the Renaissance to the present time—Gross attempts to answer the question of how the discipline of neuroscience evolved into its modern incarnation through the twists and turns of history. Charles G. Gross is an experimental neuroscientist who specializes in brain mechanisms in vision. He is also fascinated by the history of his field. In these tales describing the growth of knowledge about the brain from the early Egyptians and Greeks to the present time, he attempts to answer the question of how the discipline of neuroscience evolved into its modern incarnation through the twists and turns of history. The first essay tells the story of the visual cortex, from the first written mention of the brain by the Egyptians, to the philosophical and physiological studies by the Greeks, to the Dark Ages and the Renaissance, and finally, to the modern work of Hubel and Wiesel. The second essay focuses on Leonardo da Vinci's beautiful anatomical work on the brain and the eye: was Leonardo drawing the body observed, the body remembered, the body read about, or his own dissections? The third essay derives from the question of whether there can be a solely theoretical biology or biologist; it highlights the work of Emanuel Swedenborg, the eighteenth-century Swedish mystic who was two hundred years ahead of his time. The fourth essay entails a mystery: how did the largely ignored brain structure called the "hippocampus minor" come to be, and why was it so important in the controversies that swirled about Darwin's theories? The final essay describes the discovery of the visual functions of the temporal and parietal lobes. The author traces both developments to nineteenth-century observations of the effect of temporal and parietal lesions in monkeys—observations that were forgotten and subsequently rediscovered.




Memory and the Computational Brain


Book Description

Memory and the Computational Brain offers a provocative argument that goes to the heart of neuroscience, proposing that the field can and should benefit from the recent advances of cognitive science and the development of information theory over the course of the last several decades. A provocative argument that impacts across the fields of linguistics, cognitive science, and neuroscience, suggesting new perspectives on learning mechanisms in the brain Proposes that the field of neuroscience can and should benefit from the recent advances of cognitive science and the development of information theory Suggests that the architecture of the brain is structured precisely for learning and for memory, and integrates the concept of an addressable read/write memory mechanism into the foundations of neuroscience Based on lectures in the prestigious Blackwell-Maryland Lectures in Language and Cognition, and now significantly reworked and expanded to make it ideal for students and faculty




Memristive Devices for Brain-Inspired Computing


Book Description

Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications—Computational Memory, Deep Learning, and Spiking Neural Networks reviews the latest in material and devices engineering for optimizing memristive devices beyond storage applications and toward brain-inspired computing. The book provides readers with an understanding of four key concepts, including materials and device aspects with a view of current materials systems and their remaining barriers, algorithmic aspects comprising basic concepts of neuroscience as well as various computing concepts, the circuits and architectures implementing those algorithms based on memristive technologies, and target applications, including brain-inspired computing, computational memory, and deep learning. This comprehensive book is suitable for an interdisciplinary audience, including materials scientists, physicists, electrical engineers, and computer scientists. - Provides readers an overview of four key concepts in this emerging research topic including materials and device aspects, algorithmic aspects, circuits and architectures and target applications - Covers a broad range of applications, including brain-inspired computing, computational memory, deep learning and spiking neural networks - Includes perspectives from a wide range of disciplines, including materials science, electrical engineering and computing, providing a unique interdisciplinary look at the field