Speculative Execution in High Performance Computer Architectures


Book Description

Until now, there were few textbooks that focused on the dynamic subject of speculative execution, a topic that is crucial to the development of high performance computer architectures. Speculative Execution in High Performance Computer Architectures describes many recent advances in speculative execution techniques. It covers cutting-edge research







Multicore Processors and Systems


Book Description

Multicore Processors and Systems provides a comprehensive overview of emerging multicore processors and systems. It covers technology trends affecting multicores, multicore architecture innovations, multicore software innovations, and case studies of state-of-the-art commercial multicore systems. A cross-cutting theme of the book is the challenges associated with scaling up multicore systems to hundreds of cores. The book provides an overview of significant developments in the architectures for multicore processors and systems. It includes chapters on fundamental requirements for multicore systems, including processing, memory systems, and interconnect. It also includes several case studies on commercial multicore systems that have recently been developed and deployed across multiple application domains. The architecture chapters focus on innovative multicore execution models as well as infrastructure for multicores, including memory systems and on-chip interconnections. The case studies examine multicore implementations across different application domains, including general purpose, server, media/broadband, network processing, and signal processing. Multicore Processors and Systems is the first book that focuses solely on multicore processors and systems, and in particular on the unique technology implications, architectures, and implementations. The book has contributing authors that are from both the academic and industrial communities.




Multiscalar Processors


Book Description

Multiscalar Processors presents a comprehensive treatment of the basic principles of Multiscalar execution, and advanced techniques for implementing the Multiscalar concepts. Special emphasis is placed on highlighting the major challenges involved in Multiscalar processing. This book is organized into nine chapters, and provides an excellent synopsis of a large body of research carried out on multiscalar processors in the last decade. It starts with technology trends that provide an impetus to the development of multiscalar processors and shape the development of future processors. The work ends with a review of the recent developments related to multiscalar processors.




High Performance Memory Systems


Book Description

The State of Memory Technology Over the past decade there has been rapid growth in the speed of micropro cessors. CPU speeds are approximately doubling every eighteen months, while main memory speed doubles about every ten years. The International Tech nology Roadmap for Semiconductors (ITRS) study suggests that memory will remain on its current growth path. The ITRS short-and long-term targets indicate continued scaling improvements at about the current rate by 2016. This translates to bit densities increasing at two times every two years until the introduction of 8 gigabit dynamic random access memory (DRAM) chips, after which densities will increase four times every five years. A similar growth pattern is forecast for other high-density chip areas and high-performance logic (e.g., microprocessors and application specific inte grated circuits (ASICs)). In the future, molecular devices, 64 gigabit DRAMs and 28 GHz clock signals are targeted. Although densities continue to grow, we still do not see significant advances that will improve memory speed. These trends have created a problem that has been labeled the Memory Wall or Memory Gap.




Modern Processor Design


Book Description

Conceptual and precise, Modern Processor Design brings together numerous microarchitectural techniques in a clear, understandable framework that is easily accessible to both graduate and undergraduate students. Complex practices are distilled into foundational principles to reveal the authors insights and hands-on experience in the effective design of contemporary high-performance micro-processors for mobile, desktop, and server markets. Key theoretical and foundational principles are presented in a systematic way to ensure comprehension of important implementation issues. The text presents fundamental concepts and foundational techniques such as processor design, pipelined processors, memory and I/O systems, and especially superscalar organization and implementations. Two case studies and an extensive survey of actual commercial superscalar processors reveal real-world developments in processor design and performance. A thorough overview of advanced instruction flow techniques, including developments in advanced branch predictors, is incorporated. Each chapter concludes with homework problems that will institute the groundwork for emerging techniques in the field and an introduction to multiprocessor systems.




Cross-Modal Learning: Adaptivity, Prediction and Interaction


Book Description

The purpose of this Research Topic is to reflect and discuss links between neuroscience, psychology, computer science and robotics with regards to the topic of cross-modal learning which has, in recent years, emerged as a new area of interdisciplinary research. The term cross-modal learning refers to the synergistic synthesis of information from multiple sensory modalities such that the learning that occurs within any individual sensory modality can be enhanced with information from one or more other modalities. Cross-modal learning is a crucial component of adaptive behavior in a continuously changing world, and examples are ubiquitous, such as: learning to grasp and manipulate objects; learning to walk; learning to read and write; learning to understand language and its referents; etc. In all these examples, visual, auditory, somatosensory or other modalities have to be integrated, and learning must be cross-modal. In fact, the broad range of acquired human skills are cross-modal, and many of the most advanced human capabilities, such as those involved in social cognition, require learning from the richest combinations of cross-modal information. In contrast, even the very best systems in Artificial Intelligence (AI) and robotics have taken only tiny steps in this direction. Building a system that composes a global perspective from multiple distinct sources, types of data, and sensory modalities is a grand challenge of AI, yet it is specific enough that it can be studied quite rigorously and in such detail that the prospect for deep insights into these mechanisms is quite plausible in the near term. Cross-modal learning is a broad, interdisciplinary topic that has not yet coalesced into a single, unified field. Instead, there are many separate fields, each tackling the concerns of cross-modal learning from its own perspective, with currently little overlap. We anticipate an accelerating trend towards integration of these areas and we intend to contribute to that integration. By focusing on cross-modal learning, the proposed Research Topic can bring together recent progress in artificial intelligence, robotics, psychology and neuroscience.




Microprocessor Architecture


Book Description

This book describes the architecture of microprocessors from simple in-order short pipeline designs to out-of-order superscalars.




Architecture Design for Soft Errors


Book Description

Architecture Design for Soft Errors provides a comprehensive description of the architectural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem definition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques. There are a number of different ways this book can be read or used in a course: as a complete course on architecture design for soft errors covering the entire book; a short course on architecture design for soft errors; and as a reference book on classical fault-tolerant machines. This book is recommended for practitioners in semi-conductor industry, researchers and developers in computer architecture, advanced graduate seminar courses on soft errors, and (iv) as a reference book for undergraduate courses in computer architecture. - Helps readers build-in fault tolerance to the billions of microchips produced each year, all of which are subject to soft errors - Shows readers how to quantify their soft error reliability - Provides state-of-the-art techniques to protect against soft errors