MEMS-based Fabrication of Power Electronics Components for Advanced Power Converters


Book Description

Fabrication technology, based on MEMS processes, for constructing components for use in switched-mode power supplies are developed and presented. Capacitors, magnetic cores, and inductors based on sacrificial multilayer electroplating are designed, fabricated, and characterized. Characterization of the produced inductors' core losses at high frequency and high flux is presented, confirming the aptness of the featured microfabrication processes for reducing eddy current losses in magnetic cores. As well, the demonstration of the same inductors in DC/DC converters at high switching frequencies, up to 6 MHz, is presented. Initial work addressing the top-down development of a fully-integrated DC/DC converter is presented. As well, the comprehensive advancement of the central process - sacrificial multilayer electroplating - is presented, including the development of a second-generation automated multilayer electroplating system. The advanced sacrificial multilayer plating process is applied to produce microfabricated capacitors, which achieved in excess of 1.5 nF/mm2 capacitance density, The fabrication of highly-laminated magnetic cores and power inductors based on sacrificial multilayer electroplating is presented, along with the design and development of a system for characterizing inductor behavior at high-frequency, high-flux conditions. The design and operation of both buck and boost DC/DC converters, switching at up to 6 MHz, built around these highly-laminated-core inductors are presented.




Microelectromechanical Systems


Book Description

Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rivalâ€"perhaps surpassâ€"the societal impact of integrated circuits.




Electroceramic-Based MEMS


Book Description

The book is focused on the use of functional oxide and nitride thin films to increase functionality and application range of MEMS (microelectromechanical systems) in the large sense, including micro-sensors, micro-actuators, and electronic components for high frequency communications. The book covers major topics and is divided into two parts (a) applications and emerging applications, and (b) materials, fabrication technologies, and functioning issues.




SiC based Miniaturized Devices


Book Description

MEMS devices are found in many of today’s electronic devices and systems, from air-bag sensors in cars to smart phones, embedded systems, etc. Increasingly, the reduction in dimensions has led to nanometer-scale devices, called NEMS. The plethora of applications on the commercial market speaks for itself, and especially for the highly precise manufacturing of silicon-based MEMS and NEMS. While this is a tremendous achievement, silicon as a material has some drawbacks, mainly in the area of mechanical fatigue and thermal properties. Silicon carbide (SiC), a well-known wide-bandgap semiconductor whose adoption in commercial products is experiening exponential growth, especially in the power electronics arena. While SiC MEMS have been around for decades, in this Special Issue we seek to capture both an overview of the devices that have been demonstrated to date, as well as bring new technologies and progress in the MEMS processing area to the forefront. Thus, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) novel designs, fabrication, control, and modeling of SiC MEMS and NEMS based on all kinds of actuation mechanisms; and (2) new developments in applying SiC MEMS and NEMS in consumer electronics, optical communications, industry, medicine, agriculture, space, and defense.




Integrated Power Devices and TCAD Simulation


Book Description

From power electronics to power integrated circuits (PICs), smart power technologies, devices, and beyond, Integrated Power Devices and TCAD Simulation provides a complete picture of the power management and semiconductor industry. An essential reference for power device engineering students and professionals, the book not only describes the physics inside integrated power semiconductor devices such lateral double-diffused metal oxide semiconductor field-effect transistors (LDMOSFETs), lateral insulated-gate bipolar transistors (LIGBTs), and super junction LDMOSFETs but also delivers a simple introduction to power management systems. Instead of abstract theoretical treatments and daunting equations, the text uses technology computer-aided design (TCAD) simulation examples to explain the design of integrated power semiconductor devices. It also explores next generation power devices such as gallium nitride power high electron mobility transistors (GaN power HEMTs). Including a virtual process flow for smart PIC technology as well as a hard-to-find technology development organization chart, Integrated Power Devices and TCAD Simulation gives students and junior engineers a head start in the field of power semiconductor devices while helping to fill the gap between power device engineering and power management systems.




Nano-Bio- Electronic, Photonic and MEMS Packaging


Book Description

Nanotechnologies are being applied to the biotechnology area, especially in the area of nano material synthesis. Until recently, there has been little research into how to implement nano/bio materials into the device level. “Nano and Bio Electronics Packaging” discusses how nanofabrication techniques can be used to customize packaging for nano devices with applications to biological and biomedical research and products. Covering such topics as nano bio sensing electronics, bio device packaging, NEMs for Bio Devices and much more.




Mems for Biomedical Applications


Book Description

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy




Design and Fabrication of Mems-based, Vibration Powered Energy Harvesting Device Using Electrostatic Transduction


Book Description

Due to size effects, the microtechnologies that are used to manufacture micro-sensors, allowed a drastic reduction of electrical power consumption. This feature contributed to the emergence of the concept of autonomous sensors, which have the ability to take the energy needed for their operation from the environment where they are located. Among the different energy sources, our choice was made on ambient mechanical vibrations. The electromechanical conversion is done within a transducer integrated with a micromechanical structure. In this work, we have designed and fabricated an electrostatic transducer based on silicon-glass technology, which required the development of a dedicated deep etching process. The device was tested experimentally and we have obtained a conversion of mechanical energy into electrical energy, corresponding to a power of 61 nW, with a device whose surface area is only 66 mm2. This device is the first miniaturized silicon converter based on electrostatic transduction which does not use an electret.




Design and Development of MEMS based Guided Beam Type Piezoelectric Energy Harvester


Book Description

This book presents device design, layout design, FEM analysis, device fabrication, and packaging and testing of MEMS-based piezoelectric vibration energy harvesters. It serves as a complete guide from design, FEM, and fabrication to characterization. Each chapter of this volume illustrates key insight technologies through images. The book showcases different technologies for energy harvesting and the importance of energy harvesting in wireless sensor networks. The design, simulation, and comparison of three types of structures – single beam cantilever structure, cantilever array structure, and guided beam structure have also been reported in one of the chapters. In this volume, an elaborate characterization of two-beam and four-beam fabricated devices has been carried out. This characterization includes structural, material, morphological, topological, dynamic, and electrical characterization of the device. The volume is very concise, easy to understand, and contains colored images to understand the details of each process.




NASA Tech Briefs


Book Description