MEMS/NEMS Sensors


Book Description

Due to the ever-expanding applications of micro/nano-electromechanical systems (NEMS/MEMS) as sensors and actuators, interest in their development has rapidly expanded over the past decade. Encompassing various excitation and readout schemes, the MEMS/NEMS devices transduce physical parameter changes, such as temperature, mass or stress, caused by changes in desired measurands, to electrical signals that can be further processed. Some common examples of NEMS/MEMS sensors include pressure sensors, accelerometers, magnetic field sensors, microphones, radiation sensors, and particulate matter sensors.




Advanced MEMS/NEMS Fabrication and Sensors


Book Description

This book begins by introducing new and unique fabrication, micromachining, and integration manufacturing methods for MEMS (Micro-Electro-Mechanical Systems) and NEMS (Nano-Electro-Mechanical Systems) devices, as well as novel nanomaterials for sensor fabrications. The second section focuses on novel sensors based on these emerging MEMS/NEMS fabrication methods, and their related applications in industrial, biomedical, and environmental monitoring fields, which makes up the sensing layer (or perception layer) in IoT architecture. This authoritative guide offers graduate students, postgraduates, researchers, and practicing engineers with state-of-the-art processes and cutting-edge technologies on MEMS /NEMS, micro- and nanomachining, and microsensors, addressing progress in the field and prospects for future development. Presents latest international research on MEMS/NEMS fabrication technologies and novel micro/nano sensors; Covers a broad spectrum of sensor applications; Written by leading experts in the field.




Mems/Nems


Book Description

This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.




MEMS and NEMS


Book Description

The development of micro- and nano-mechanical systems (MEMS and NEMS) foreshadows momentous changes not only in the technological world, but in virtually every aspect of human life. The future of the field is bright with opportunities, but also riddled with challenges, ranging from further theoretical development through advances in fabrication technologies, to developing high-performance nano- and microscale systems, devices, and structures, including transducers, switches, logic gates, actuators and sensors. MEMS and NEMS: Systems, Devices, and Structures is designed to help you meet those challenges and solve fundamental, experimental, and applied problems. Written from a multi-disciplinary perspective, this book forms the basis for the synthesis, modeling, analysis, simulation, control, prototyping, and fabrication of MEMS and NEMS. The author brings together the various paradigms, methods, and technologies associated with MEMS and NEMS to show how to synthesize, analyze, design, and fabricate them. Focusing on the basics, he illustrates the development of NEMS and MEMS architectures, physical representations, structural synthesis, and optimization. The applications of MEMS and NEMS in areas such as biotechnology, medicine, avionics, transportation, and defense are virtually limitless. This book helps prepare you to take advantage of their inherent opportunities and effectively solve problems related to their configurations, systems integration, and control.




MEMS/NEMS Sensors: Fabrication and Application


Book Description

Due to the ever-expanding applications of micro/nano-electromechanical systems (NEMS/MEMS) as sensors and actuators, interest in their development has rapidly expanded over the past decade. Encompassing various excitation and readout schemes, the MEMS/NEMS devices transduce physical parameter changes, such as temperature, mass or stress, caused by changes in desired measurands, to electrical signals that can be further processed. Some common examples of NEMS/MEMS sensors include pressure sensors, accelerometers, magnetic field sensors, microphones, radiation sensors, and particulate matter sensors. Despite a long history of development, fabrication of novel MEMS/NEMS devices still poses unique challenges due to their requirement for a suspended geometry; and many new fabrication techniques have been proposed to overcome these challenges. However, further development of these techniques is still necessary, as newer materials such as compound semiconductors, and 2-dimensional materials are finding their way in various MEMS/NEMS applications, with more complex structures and potentially smaller dimensions.




Mems for Biomedical Applications


Book Description

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy




Development of CMOS-MEMS/NEMS Devices


Book Description

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]




Modeling MEMS and NEMS


Book Description

Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o




Advanced Micro- and Nano-manufacturing Technologies


Book Description

This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.




3D and Circuit Integration of MEMS


Book Description

Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems MEMS and system integration are important building blocks for the “More-Than-Moore” paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration. You’ll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks. Readers will also benefit from the inclusion of: A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.