Mercury Cadmium Telluride Imagers


Book Description

In two parts, this book describes the evolution of mercury cadmium telluride (HgCdTe) imager structures based upon published patents and patent applications. The first part covers monolithic arrays, and the second part describes hybrid arrays. Each part has 5 chapters, with each document placed in chronological order, with the documents with the earliest priority placed first. Focus has been directed at the steps of manufacturing and structures of imagers.There is an index at the end of the book containing the patent number, the name of the applicant and the date of publication of each cited document.This monograph will serve as a useful summary of the patents and patent applications in the field of mercury cadmium telluride imagers.




Mercury Cadmium Telluride


Book Description

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. Mercury Cadmium Telluride: Growth, Properties and Applications provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes: Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth Liquid phase epitaxy (LPE) growth Metal-organic vapour phase epitaxy (MOVPE) Molecular beam epitaxy (MBE) Alternative substrates Mechanical, thermal and optical properties of MCT Defects, diffusion, doping and annealing Dry device processing Photoconductive and photovoltaic detectors Avalanche photodiode detectors Room-temperature IR detectors







Mercury Cadmium Telluride


Book Description

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. Mercury Cadmium Telluride: Growth, Properties and Applications provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes: Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth Liquid phase epitaxy (LPE) growth Metal-organic vapour phase epitaxy (MOVPE) Molecular beam epitaxy (MBE) Alternative substrates Mechanical, thermal and optical properties of MCT Defects, diffusion, doping and annealing Dry device processing Photoconductive and photovoltaic detectors Avalanche photodiode detectors Room-temperature IR detectors




Medical Infrared Imaging


Book Description

The evolution of technological advances in infrared sensor technology, image processing, "smart" algorithms, knowledge-based databases, and their overall system integration has resulted in new methods of research and use in medical infrared imaging. The development of infrared cameras with focal plane arrays no longer requiring cooling, added a new




Thermal Imaging Techniques to Survey and Monitor Animals in the Wild


Book Description

Thermal Imaging Techniques to Survey and Monitor Animals in the Wild: A Methodology provides a manual for anyone interested in understanding thermal imaging and its usefulness in solving a wide range of problems regarding the observation of wildlife. In the last decade, the cost of thermal imaging technology has significantly decreased, making the equipment more widely available. This book offers an overview of thermal physics and the thermal imager, along with a methodology to optimize the window of opportunity so that wildlife can be observed and studied in their natural habitat. Users will find the knowledge and tools to formulate a sound survey design, with detailed sections on the theory and performance characteristics of thermal imaging cameras utilizing cooled quantum detectors as the sensitive element and additional information on the uncooled micro bolometric imagers which have been introduced into the camera market in past decades. The methodology presented is logical and simple, yet it presents a detailed understanding of the topic and how it applies to the critically interlinked disciplines of biology, physics, micrometeorology, and animal physiology. - Covers the technical aspects of thermal imaging allowing readers to design better experiments - Provides a clear description of the properties of thermal imaging - Includes approaches to consider before integrating thermal cameras into a field




Metalorganic Vapor Phase Epitaxy (MOVPE)


Book Description

Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).




Infrared Thermal Imaging


Book Description

This new up-to-date edition of the successful handbook and ready reference retains the proven concept of the first, covering basic and advanced methods and applications in infrared imaging from two leading expert authors in the field. All chapters have been completely revised and expanded and a new chapter has been added to reflect recent developments in the field and report on the progress made within the last decade. In addition there is now an even stronger focus on real-life examples, with 20% more case studies taken from science and industry. For ease of comprehension the text is backed by more than 590 images which include graphic visualizations and more than 300 infrared thermography figures. The latter include many new ones depicting, for example, spectacular views of phenomena in nature, sports, and daily life.




Raman, Infrared, and Near-Infrared Chemical Imaging


Book Description

An all-inclusive guide on the analytical methods of Raman, infrared, and near-infrared chemical imaging An underutilized technology, chemical imaging through Raman, infrared (IR), and near-infrared (NIR) is beginning to gain recognition for its non-destructive method of permitting visualization of spatially resolved chemical information. This type of analysis is triggering a groundswell of demand as manufactured materials become more complex and the need for greater scrutiny and less damaging research practices is at a premium. Concentrating on the applications of chemical imaging, this book presents a thorough background on the theory, software, and hardware employed in this analytical technique. With full examination of this rapidly growing field, this book: Combines many different aspects and applications into one comprehensive volume Discusses how chemical imaging techniques have expanded greatly in terms of instruments and applications, but have lagged in general awareness among scientists and industries that would benefit the most from them Describes chemical imaging uses in key areas—biomedical, pharmaceutical, food, and polymer research Has chapters that outline hardware and instrumentation for the different methods of chemical imaging Encapsulating analytic methods without complicating the subject matter, this book shows where chemical imaging has been successfully applied, inspiring researchers to cultivate the exciting capabilities rooted within this powerful and multifaceted technology.




Biomedical Photonics Handbook


Book Description

A wide variety of biomedical photonic technologies have been developed recently for clinical monitoring of early disease states; molecular diagnostics and imaging of physiological parameters; molecular and genetic biomarkers; and detection of the presence of pathological organisms or biochemical species of clinical importance. However, available in