Metabolic Phenotyping of Uncoupling Protein-3 Knockout Mice


Book Description

La protéine découplante-3 (UCP3) appartient à la famille des transporteurs mitochondriaux. Cette protéine du muscle squelettique découple la phosphorylation oxydative en dissipant le gradient de proton. La fonction physiologique d'UCP3 reste cependant à déterminer. Les données de la littérature suggèrent un rôle dans l'oxydation des acides gras, dans la régulation du niveau de stress oxydatif, ou dans la dépense énergétique. Afin de comprendre la fonction d'UCP3, nous avons généré des souris déficientes en cette protéine (UCP3KO). L'étude du métabolisme des souris UCP3KO indique que l'UCP3 ne joue pas un rôle essentiel dans l'homéostasie glucido-lipidique. Les changements d'expression d'UCP3 suggèrent que cette protéine n'a pas pour fonction de réguler le niveau de stress oxydatif. En revanche, la mesure de la dépense énergétique des souris UCP3KO traitées avec l'hormone thyroïdienne (triiodothyronine) révèle qu'UCP3 intervient dans l'effet activateur des hormones thyroïdiennes sur la dépense énergétique. Ce résultat suggère qu'UCP3 favorise la dissipation d'énergie.




Translocator Protein (TSPO)


Book Description

This book is a printed edition of the Special Issue "Translocator Protein (TSPO)" that was published in IJMS




Cancer as a Metabolic Disease


Book Description

The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.




Life in the Cold


Book Description

This book gives an up-to-date account of the current knowledge of cold adaptation in animals, including phenomena like hibernation, daily torpor, thermoregulation and thermogenesis, metabolic regulation, freeze tolerance, anaerobiosis, metabolic depression and related processes. For the next four years - until the 12th International Hibernation Symposium - it will serve as a state-of-the-art reference source for every scientist and graduate student working in these areas of physiology and zoology.




Innovative Medicine


Book Description

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.




The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References




Mitochondria in Health and Diseases


Book Description

Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.




Mitochondrial DNA


Book Description

Mutations within mitochondrial DNA (mtDNA) and the nuclear genes involved in the maintenance of mitochondrial DNA have been linked to a wide range of human diseases, including several of the most common diseases of aging. In Mitochondrial DNA: Methods and Protocols internationally recognized authorities describe in great detail the methods they have perfected to analyze mtDNA and the proteins involved in its maintenance. The analytical techniques cover the purification of mtDNA from a variety of sources and the analysis of DNA for both deletions, point mutations, and damage, for replication intermediates, and for following the fate of mtDNA outside of the mitochondria. Additional analytical methods are presented for analyzing the proteins and enzymes that maintain mtDNA. Each readily reproducible protocol includes step-by-step instructions, tips on avoiding pitfalls and extending the method to other situation, and introductory material explaining the theory behind the process. Comprehensive and timely, Mitochondrial DNA: Methods and Protocols offers both basic and clinical researchers proven cutting-edge methods for analyzing the role mtDNA plays in the aging process, apoptosis, and possibly some cancers, and for investigating the cause of mitochondrial dysfunction and disease.




Mechanisms of Dietary Restriction in Aging and Disease


Book Description

Dietary restriction uniquely and robustly increases maximum lifespan and greatly reduces age-related diseases in many species, including yeast, flies, nematodes, and mammals. To study mechanisms mediating the protective effects of dietary restriction, the