Metacyclic Groups And The D(2) Problem


Book Description

The D(2) problem is a fundamental problem in low dimensional topology. In broad terms, it asks when a three-dimensional space can be continuously deformed into a two-dimensional space without changing the essential algebraic properties of the spaces involved.The problem is parametrized by the fundamental group of the spaces involved; that is, each group G has its own D(2) problem whose difficulty varies considerably with the individual nature of G.This book solves the D(2) problem for a large, possibly infinite, number of finite metacyclic groups G(p, q). Prior to this the author had solved the D(2) problem for the groups G(p, 2). However, for q > 2, the only previously known solutions were for the groups G(7, 3), G(5, 4) and G(7, 6), all done by difficult direct calculation by two of the author's students, Jonathan Remez (2011) and Jason Vittis (2019).The method employed is heavily algebraic and involves precise analysis of the integral representation theory of G(p, q). Some noteworthy features are a new cancellation theory of modules (Chapters 10 and 11) and a simplified treatment (Chapters 5 and 12) of the author's theory of Swan homomorphisms.




Groups of Prime Power Order. Volume 5


Book Description

This is the fifth volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume include theory of linear algebras and Lie algebras. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.




Groups of Prime Power Order. Volume 3


Book Description

This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.




Recent Developments in the Inverse Galois Problem


Book Description

This book contains the refereed proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Recent Developments in the Inverse Galois Problem, held in July 1993 at the University of Washington, Seattle. A new review of Serre's Topics in Galois Theory serves as a starting point. The book describes the latest research on explicit presentation of the absolute Galois group of the rationals. Containing the first appearance of generalizations of modular curves, the book presents applications that demonstrate the full scope of the Inverse Galois Problem. In particular, the papers collected here show the ubiquity of the applications of the Inverse Galois Problem and its compelling significance. The book will serve as a guide to progress on the Inverse Galois Problem and as an aid in using this work in other areas of mathematics. This includes coding theory and other finite field applications. Group theory and a first course in algebraic curves are sufficient for understanding many papers in the volume. Graduate students will find this an excellent reference to current research, as it contains a list of problems appropriate for thesis material in arithmetic geometry, algebraic number theory, and group theory.




Nearrings and Nearfields


Book Description

The present volume is the Proceedings of the 18th International Conference on Nearrings and Nearfields held at the Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, from July 27 – August 3, 2003. It contains the written versions of the lectures by the five invited speakers. These concern recent developments of planar nearrings, nearrings of mappings, group nearrings and loop-nearrings. One of them is a long and very substantial research paper "The Z-Constrained Conjecture". They are followed by 13 contributions reflecting the diversity of the subject of nearrings and related structures. Besides the purely algebraic structure theory these papers show many connections of nearring theory with group theory, combinatorics, geometries, and topology. They all contain original research.




Groups of Prime Power Order. Volume 6


Book Description

This is the sixth volume of a comprehensive and elementary treatment of finite group theory. This volume contains many hundreds of original exercises (including solutions for the more difficult ones) and an extended list of about 1000 open problems. The current book is based on Volumes 1–5 and it is suitable for researchers and graduate students working in group theory.




A Course on Finite Groups


Book Description

Introduces the richness of group theory to advanced undergraduate and graduate students, concentrating on the finite aspects. Provides a wealth of exercises and problems to support self-study. Additional online resources on more challenging and more specialised topics can be used as extension material for courses, or for further independent study.




Groups of Prime Power Order. Volume 4


Book Description

This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa’s theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.




Syzygies and Homotopy Theory


Book Description

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples Fn ́F where Fn is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares. The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.




Mathematical Foundations of Computer Science 2014


Book Description

This two volume set LNCS 8634 and LNCS 8635 constitutes the refereed conference proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science, MFCS 2014, held in Budapest, Hungary, in August 2014. The 95 revised full papers presented together with 6 invited talks were carefully selected from 270 submissions. The focus of the conference was on following topics: Logic, Semantics, Automata, Theory of Programming, Algorithms, Complexity, Parallel and Distributed Computing, Quantum Computing, Automata, Grammars and Formal Languages, Combinatorics on Words, Trees and Games.