Metal Additive Manufacturing – State of the Art 2020


Book Description

Additive Manufacturing (AM), more popularly known as 3D printing, is transforming the industry. AM of metal components with virtually no geometric limitations has enabled new product design options and opportunities, increased product performance, shorter cycle time in part production, total cost reduction, shortened lead time, improved material efficiency, more sustainable products and processes, full circularity in the economy, and new revenue streams. This Special Issue of Metals gives an up-to-date account of the state of the art in AM.




Advances in Metal Additive Manufacturing


Book Description

Advances in Metal Additive Manufacturing explains fundamental information and the latest research on new technologies, including powder bed fusion, direct energy deposition using high energy beams, and hybrid additive and subtractive methods. This book introduces readers to the technology, provides everything needed to understand how the different stages work together, and inspires to think beyond traditional metal processing to capture new ideas in metal. Chapters offer an introduction on metal additive manufacturing, processes, and properties and standards and then present surveys on the most significant international advances in metal additive manufacturing. Throughout, the book presents a focus on the effect of important process parameters on the microstructure, mechanical properties and wear behavior of additively manufactured parts. - Covers the entire process chain of metal additive manufacturing, from input data preparation to part certification - Describes a wide range of the latest design tools and options, including generative design, topology optimization, and lattice and surface optimization - Addresses additive manufacturing, with a comprehensive list of metals including titanium, aluminum, iron-and nickel-based alloys and Inconel 718




Additive Manufacturing Applications for Metals and Composites


Book Description

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.




Hybrid Metal Additive Manufacturing


Book Description

The text presents the latest research and development, technical challenges, and future directions in the field of hybrid metal additive manufacturing. It further discusses the modeling of hybrid additive manufacturing processes for metals, hybrid additive manufacturing of composite materials, and low-carbon hybrid additive manufacturing processes. THIS BOOK •Presents cutting-edge advancements and limitations in hybrid additive manufacturing technologies. • Discusses fabrication methods and rapid tooling techniques focusing on metals, composites, and alloys. •Highlights the importance of low-carbon additive manufacturing technologies toward achieving sustainability. •Emphasizes the challenges and solutions for integrating additive manufacturing and Industry 4.0 to enable rapid manufacturing of customized and tailored products. • Covers hybrid additive manufacturing of composite materials and additive manufacturing for fabricating high-hardness components. The text discusses the recent advancements in additive manufacturing of high-hardness components and covers important engineering materials such as metals, alloys, and composites. It further highlights defects and post-processing of hybrid additive manufacturing components, sustainability solutions for hybrid additive manufacturing processes, and recycling of machining waste into metal powder feedstock. It will serve as an ideal reference text for senior undergraduate and graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.




Engineering of Additive Manufacturing Features for Data-Driven Solutions


Book Description

This book is a comprehensive guide to the latest developments in data-driven additive manufacturing (AM). From data mining and pre-processing to signal processing, computer vision, and more, the book covers all the essential techniques for preparing AM data. Readers willl explore the key physical and synthetic sources of AM data throughout the life cycle of the process and learn about feature engineering techniques, pipelines, and resulting features, as well as their applications at each life cycle phase. With a focus on featurization efforts from reviewed literature, this book offers tabular summaries for major data sources and analyzes feature spaces at the design, process, and structure phases of AM to uncover trends and insights specific to feature engineering techniques. Finally, the book discusses current challenges and future directions, including AI/ML/DL readiness of AM data. Whether you're an expert or newcomer to the field, this book provides a broader summary of the status and future of data-driven AM technology.




Machine Learning for Powder-Based Metal Additive Manufacturing


Book Description

Machine Learning for Powder-based Metal Additive Manufacturing outlines machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs. The book combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications. The book covers ML for design in AM, ML for materials development and intelligent monitoring in metal AM, both geometrical deviation and physics informed machine learning modeling, as well as data-driven cost estimation by ML. In addition, optimization for slicing and orientation, ML to create models of materials for AM processes, ML prediction for better mechanical and microstructure prediction, and feature extraction by sensing data are all covered, and each chapter includes a case study. - Covers machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs - Combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications - Discusses algorithm development of ML for metal AM, metal AM process modeling and optimization, mathematical and simulation studies of metal AM, and pre- and post-processing smart methods for metal AM




Additive Manufacturing (AM) of Metallic Alloys


Book Description

The introduction of metal AM processes in such industrial sectors as the aerospace, automotive, defense, jewelry, medical and tool-making fields, has led to a significant reduction in waste material and in the lead times of the components, innovative designs with higher strength, lower weight, and fewer potential failure points from joining features. This Special Issue on "Additive Manufacturing (AM) of Metallic Alloys" contains a mixture of review articles and original contributions on some problems that limit the wider uptake and exploitation of metals in AM.




Additive Manufacturing of Metals


Book Description

This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.




Metal Additive Manufacturing


Book Description

METAL ADDITIVE MANUFACTURING A comprehensive review of additive manufacturing processes for metallic structures Additive Manufacturing (AM)—also commonly referred to as 3D printing—builds three-dimensional objects by adding materials layer by layer. Recent years have seen unprecedented investment in additive manufacturing research and development by governments and corporations worldwide. This technology has the potential to replace many conventional manufacturing processes, enable the development of new industry practices, and transform the entire manufacturing enterprise. Metal Additive Manufacturing provides an up-to-date review of all essential physics of metal additive manufacturing techniques with emphasis on both laser-based and non-laser-based additive manufacturing processes. This comprehensive volume covers fundamental processes and equipment, governing physics and modelling, design and topology optimization, and more. The text adresses introductory, intermediate, and advanced topics ranging from basic additive manufacturing process classification to practical and material design aspects of additive manufacturability. Written by a panel of expert authors in the field, this authoritative resource: Provides a thorough analysis of AM processes and their theoretical foundations Explains the classification, advantages, and applications of AM processes Describes the equipment required for different AM processes for metallic structures, including laser technologies, positioning devices, feeder and spreader mechanisms, and CAD software Discusses the opportunities, challenges, and current and emerging trends within the field Covers practical considerations, including design for AM, safety, quality assurance, automation, and real-time control of AM processes Includes illustrative cases studies and numerous figures and tables Featuring material drawn from the lead author’s research and professional experience on laser additive manufacturing, Metal Additive Manufacturing is an important source for manufacturing professionals, research and development engineers in the additive industry, and students and researchers involved in mechanical, mechatronics, automatic control, and materials engineering and science.




Advances in Additive Manufacturing and Metal Joining


Book Description

This book presents select proceedings of the 8th International and 29th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2021). It discusses the latest advances in miniature manufacturing, machining of miniature components, surface engineering, nanomaterials, nanotechnology, Industry 4.0, optimization techniques, micro-electric discharge machining, electrochemical micro-machining, thin films, optimization of micro-machining process parameters, machining of nano-composites, characterization using atomic force microscopy, micro-tool fabrications, characterization of nano-composites, surface roughness analysis, tribological performance of surface coated materials and sustainability in manufacturing. The contents of this book are useful for students, researchers and as well as industry professionals in the various fields of mechanical engineering.