Metal Micro-Droplet Based 3D Printing Technology


Book Description

This book introduces a unique 3D printing method that prints metal parts by ejecting metal micro-droplets: a low-cost, contactless, and environmentally friendly 3D printing technology. This book follows a deductive approach to describe the fundamentals of metal droplet-based 3D printing and reveal the relationships and unique features among multiple specific techniques used in droplet-based 3D printing. It starts with a general description of the principles and techniques involved in this technology and then focuses on the details of several specific metal droplet-ejection methods. Next, it puts forward various specific 3D printing techniques and illustrates their applications. This book is a valuable reference for scholars and researchers who work on metal 3D printing and other related areas. It is also used as a textbook for college graduate courses in mechanical manufacturing and material processing.




Springer Handbook of Additive Manufacturing


Book Description

This Handbook is the ultimate definitive guide that covers key fundamentals and advanced applications for Additive Manufacturing. The Handbook has been structured into seven sections, comprising of a thorough Introduction to Additive Manufacturing; Design and Data; Processes; Materials; Post-processing, Testing and Inspection; Education and Training; and Applications and Case Study Examples. The general principles and functional relationships are described in each chapter and supplemented with industry use cases. The aim of this book is to help designers, engineers and manufacturers understand the state-of-the-art developments in the field of Additive Manufacturing. Although this book is primarily aimed at students and educators, it will appeal to researchers and industrial professionals working with technology users, machine or component manufacturers to help them make better decisions in the implementation of Additive Manufacturing and its applications.







Additive Manufacturing Classification


Book Description

Additive manufacturing classification is one of the biggest issues faced by AM community. The book provides a comprehensive classification of AM, which can be useful to anyone working in any area of manufacturing. As the classification depends on the interrelation of various AM processes, the book provides concise and critical information of those processes, which can be helpful to anyone looking for a concise book on AM. The book provides original information unavailable in research papers.




Handbook of Materials Structures, Properties, Processing and Performance


Book Description

This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.




Quality Analysis of Additively Manufactured Metals


Book Description

Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more.Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings. - Provides insights and outlines techniques for analyzing why additively manufactured metals fail and strategies for avoiding those failures - Defines key terms and concepts related to the failure analysis, quality assurance and optimization processes of additively manufactured metals - Includes simulation results, experimental data and case studies




Organ Printing


Book Description

This book introduces various 3D printing systems, biomaterials, and cells for organ printing. In view of the latest applications of several 3D printing systems, their advantages and disadvantages are also discussed. A basic understanding of the entire spectrum of organ printing provides pragmatic insight into the mechanisms, methods, and applications of this discipline. Organ printing is being applied in the tissue engineering field with the purpose of developing tissue/organ constructs for the regeneration of both hard (bone, cartilage, osteochondral) and soft tissues (heart). There are other potential application areas including tissue/organ models, disease/cancer models, and models for physiology and pathology, where in vitro 3D multicellular structures developed by organ printing are valuable.




Fundamentals of the Shoulder


Book Description

This book comprehensively covers both basic and clinical aspects of the shoulder, from its anatomy and biomechanics, to the diagnosis and treatment of a broad range of shoulder disorders. Designed as a practical and richly illustrated reference guide, it provides the reader with the essentials needed to evaluate and treat shoulder injuries, including radiologic assessments, rehabilitative techniques and surgical procedures (both open and arthroscopic). It includes extensive coverage of the anatomy and pathology, while clinical topics covered include fractures around the shoulder joint, sport injuries and arthroplasty. Written by an international team of experts, who share tips, pearls and pitfalls, as well as best practices from their own experience, the book will be of interest to orthopedic surgeons, physical therapists, rehabilitation specialists and biomechanists alike.




3D Printing of Metals


Book Description

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.




Multimaterial 3D Printing Technology


Book Description

Multi-material 3D Printing Technology introduces the first models for complex construction and manufacturing using a multi-material 3D printer. The book also explains the advantages that these innovative models provide at various points of the manufacturing supply chain. Innovations in fields such as medicine and aerospace are seeing 3D printing applied to problems that require the technology to develop beyond its traditional definitions. This groundbreaking book provides broad coverage of the theory behind this emerging technology, and the technical details required for readers to investigate these methods for themselves. In addition to describing new models for application of this technology, this book also systematically summarizes the historical models, materials and relevant technologies that are important in multi-material 3D printing. - Introduces the heterogeneous object model for 3D printing - Provides case studies of the use of hybrid 3D Printing to create gears and human bone - Presents techniques which are easy to realize using commercial 3D printers