A Textbook of Inorganic Chemistry – Volume 1


Book Description

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.




Transition Metal Arene P-Complexes in Organic Synthesis and Catalysis


Book Description

Metal-arene p-complexes show a rich and varied chemistry. The metal adds a third dimension to the planar aromatic compounds and coordination of a metal to an arene thus not only altering the reactivity of ring-carbons and substituents but also makes possible reactions that lead to chiral non-racemic products. This book, organized in nine chapters and written by leading scientists in the field provides the reader with an up-to-date treatise on the subject organized according to reaction type and use. It covers the wide spectrum of arene activation: from the electrophilic activation of h6-bound areneï⿬ by p-Lewis acid metal complex fragments, to reactions of nucleophilic h2-coordinated arene complexes. The preparation of complexes is detailed, as are the scope, limitations and challenges of reactions in contemporary p-arene metal chemistry with special attention given to asymmetric transformations. The emphasis of the book is on transformations of interest to organic synthesis and on the use of the complexes as catalysts or as chiral ligands. The book is written for academic and industrial researchers in organic, organometallic, and inorganic chemistry as well as for advanced chemistry students




Organometallic Chemistry and Catalysis


Book Description

This volume covers both basic and advanced aspects of organometallic chemistry of all metals and catalysis. In order to present a comprehensive view of the subject, it provides broad coverage of organometallic chemistry itself. The catalysis section includes the challenging activation and fictionalization of the main classes of hydrocarbons and the industrially crucial heterogeneous catalysis. Summaries and exercises are provides at the end of each chapter, and the answers to these exercises can be found at the back of the book. Beginners in inorganic, organic and organometallic chemistry, as well as advanced scholars and chemists from academia and industry will find much value in this title.




Molecular Orbitals of Transition Metal Complexes


Book Description

This book starts with the most elementary ideas of molecular orbital theory and leads the reader progressively to an understanding of the electronic structure, geometry and, in some cases, reactivity of transition metal complexes. The qualitative orbital approach, based on simple notions such as symmetry, overlap and electronegativity, is the focus of the presentation and a substantial part of the book is associated with the mechanics of the assembly of molecular orbital diagrams. The first chapter recalls the basis for electron counting in transition metal complexes. The main ligand fields (octahedral, square planar, tetrahedral, etc.) are studied in the second chapter and the structure of the "d block" is used to trace the relationships between the electronic structure and the geometry of the complexes. The third chapter studies the change in analysis when the ligands have pi-type interactions with the metal. All these ideas are then used in the fourth chapter to study a series of selected applications of varying complexity (e.g. structure and reactivity). The fifth chapter deals with the "isolobal analogy" which points out the resemblance between the molecular orbitals of inorganic and organic species and provides a bridge between these two subfields of chemistry. The last chapter is devoted to a presentation of basic Group Theory with applications to some of the complexes studied in the earlier chapters.




Metal Π-complexes


Book Description




Metal Complexes


Book Description

The Organic Chemistry of Palladium, Volume 1: Metal Complexes deals with the number of organic reactions that can be catalyzed by palladium, particularly as regards the structures bonding, and reactions of the metal complexes. The book discusses monodentate ligands which are either neutral (carbonyls, isonitriles, carbenes) or anionic (methyl, phenyl, ethynyl, hydride). The text also examines the complexes formed by 1,3-. 1,4-, and 1,5-diolefins where four carbon atoms are bound to the metal. Palladium (II) can undergo a reaction with the 1,3-dienes and results in a ?-allylic complexes where only three carbon atoms are coordinated to the metal. (The bonding situation in complexes 1,4- and 1,5-dienes, where no great interaction between the olefins are similar to that in monoolefin complexes, is straightforward), Olefins can also react with palladium chloride in protic solvents to produce ketones (or aldehydes) or organic coupling products. Some experiments conducted by Huttel et al shows that some palladium was precipitated from the reactions giving lower yields, resulting in various aldehydes and ketones as by products. The book also discusses cyclopentadienyl and benzene complexes. The text can prove beneficial for researchers, investigators and scientists whose works involve organic chemistry, analytical chemistry, physical chemistry and inorganic chemistry.




The Organometallic Chemistry of the Transition Metals


Book Description

Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.




Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis


Book Description

Metal-arene pi-complexes show a rich and varied chemistry. The metal adds a third dimension to the planar aromatic compounds and coordination of a metal to an arene thus not only altering the reactivity of ring-carbons and substituents but also makes possible reactions that lead to chiral non-racemic products. This book, organized in nine chapters and written by leading scientists in the field provides the reader with an up-to-date treatise on the subject organized according to reaction type and use. It covers the wide spectrum of arene activation: from the electrophilic activation of h6-bound arene by pi-Lewis acid metal complex fragments, to reactions of nucleophilic h2-coordinated arene complexes. The preparation of complexes is detailed, as are the scope, limitations and challenges of reactions in contemporary pi-arene metal chemistry with special attention given to asymmetric transformations. The emphasis of the book is on transformations of interest to organic synthesis and on the use of the complexes as catalysts or as chiral ligands. The book is written for academic and industrial researchers in organic, organometallic, and inorganic chemistry as well as for advanced chemistry students.







Advances in Organometallic Chemistry


Book Description

Advances in Organometallic Chemistry