Metal Process Engineering


Book Description




Metal Shaping Processes


Book Description

As the only comprehensive text focusing on metal shaping processes, which are still the most widely used processes in the manufacture of products and structures, Metal Shaping Processes carefully presents the fundamentals of metal shaping processes with their relevant applications. The treatment of the subject matter is adequately descriptive for those unfamiliar with the various processes and yet is sufficiently analytical for an introductory academic course in manufacturing. The text, as well as the numerous formulas and illustrations in each chapter, clearly show that shaping processes, as a part of manufacturing engineering, are a complex and interdisciplinary subject. The topics are organized and presented in such a manner that they motivate and challenge students to present technically and economically viable solutions to a wide variety of questions and problems, including product design. It is the perfect textbook for students in mechanical, industrial, and manufacturing engineering programs at both the Associate Degree and Bachelor Degree programs, as well a valuable reference for manufacturing engineers (those who design, execute and maintain the equipment and tools); process engineers (those who plan and engineer the manufacturing steps, equipment, and tooling needed in production); manufacturing managers and supervisors; product design engineers; and maintenance and reliability managers and technicians. Each chapter begins with a brief highlighted outline of the topics to be described. Carefully presents the fundamentals of the particular metal-shaping process with its relevant applications within each chapter, so that the student and teacher can clearly assess the capabilities, limitation, and potentials of the process and its competitive aspects. Features sections on product design considerations, which present guidelines on design for manufacturing in many of the chapters. Offers practical, understandable explanations, even for complex processes. Includes text entries that are coded as in an outline, with these numerical designations carried over the 320 related illustrations for easy cross-referencing. Provides a dual (ISO and USA) unit system. Contains end-of-chapter Review Questions. Includes a chapter on sheet metalworking covering cutting processes; bending process; tubes and pipe bending; deep drawing processes; other sheet metal forming process (stretch forming, spinning, rubber forming, and superplatic forming and diffusion bonding). Provides a useful die classification with 15 illustrations and description; presses for sheet metalworking; and high energy-rate forming processes. A chapter on nontraditional manufacturing process discusses such important processes as mechanical energy processes (ultrasonic machining, water jet cutting); electrochemical machining processes (electrochemical machining, electrochemical grinding); thermal energy processes (electric discharge processes, laser beam machining, electron beam machining); and chemical processes (chemical milling).




Metal Process Engineering


Book Description




Metal Process Engineering


Book Description




Metallurgical Process Engineering


Book Description

"Metallurgical Process Engineering" discusses large-scale integrated theory on the level of manufacturing production processes, putting forward concepts for exploring non-equilibrium and irreversible complex system. It emphasizes the dynamic and orderly operation of the steel plant manufacturing process, the major elements of which are the flow, process network and program. The book aims at establishing a quasi-continuous and continuous process system for improving several techno-economic indices, minimizing dissipation and enhancing the market competitiveness and sustainability of steel plants. The book is intended for engineers, researchers and managers in the fields of metallurgical engineering, industrial design, and process engineering. Prof. Ruiyu Yin is honorary president of the Central Iron and Steel Research Institute, China, and a member of the Chinese Academy of Engineering.







Metal Process Engineering


Book Description




Metal Cutting Theory and Practice


Book Description

A Complete Reference Covering the Latest Technology in Metal Cutting Tools, Processes, and Equipment Metal Cutting Theory and Practice, Third Edition shapes the future of material removal in new and lasting ways. Centered on metallic work materials and traditional chip-forming cutting methods, the book provides a physical understanding of conventional and high-speed machining processes applied to metallic work pieces, and serves as a basis for effective process design and troubleshooting. This latest edition of a well-known reference highlights recent developments, covers the latest research results, and reflects current areas of emphasis in industrial practice. Based on the authors’ extensive automotive production experience, it covers several structural changes, and includes an extensive review of computer aided engineering (CAE) methods for process analysis and design. Providing updated material throughout, it offers insight and understanding to engineers looking to design, operate, troubleshoot, and improve high quality, cost effective metal cutting operations. The book contains extensive up-to-date references to both scientific and trade literature, and provides a description of error mapping and compensation strategies for CNC machines based on recently issued international standards, and includes chapters on cutting fluids and gear machining. The authors also offer updated information on tooling grades and practices for machining compacted graphite iron, nickel alloys, and other hard-to-machine materials, as well as a full description of minimum quantity lubrication systems, tooling, and processing practices. In addition, updated topics include machine tool types and structures, cutting tool materials and coatings, cutting mechanics and temperatures, process simulation and analysis, and tool wear from both chemical and mechanical viewpoints. Comprised of 17 chapters, this detailed study: Describes the common machining operations used to produce specific shapes or surface characteristics Contains conventional and advanced cutting tool technologies Explains the properties and characteristics of tools which influence tool design or selection Clarifies the physical mechanisms which lead to tool failure and identifies general strategies for reducing failure rates and increasing tool life Includes common machinability criteria, tests, and indices Breaks down the economics of machining operations Offers an overview of the engineering aspects of MQL machining Summarizes gear machining and finishing methods for common gear types, and more Metal Cutting Theory and Practice, Third Edition emphasizes the physical understanding and analysis for robust process design, troubleshooting, and improvement, and aids manufacturing engineering professionals, and engineering students in manufacturing engineering and machining processes programs.