Metalloids in Plants


Book Description

Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.




Metalloids in Plants


Book Description

Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.




Metalloids in Plants


Book Description

Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.




Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids


Book Description

Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids covers all the technical aspects of gene transfer, from molecular methods, to field performance using a wide range of plants and diverse abiotic stress factors. It describes methodologies that are well established as a key resource for researchers, as well as a tool for training technicians and students. This book is an essential reference for those in the plant sciences, forestry, agriculture, microbiology, environmental biology and plant biotechnology, and those using transgenic plant models in such areas as molecular and cell biology, developmental biology, stress physiology and phytoremediation. Provides in-depth coverage of transgenic plant technology for environmental problems Discusses background and an introduction to techniques and salient protocols using specific plants systems Includes emerging strategies for application of transgenic plans in remediation




Plant Metal Interaction


Book Description

Plant Metal Interaction: Emerging Remediation Techniques covers different heavy metals and their effect on soils and plants, along with the remediation techniques currently available. As cultivable land is declining day-by-day as a result of increased metals in our soil and water, there is an urgent need to remediate these effects. This multi-contributed book is divided into four sections covering the whole of plant metal interactions, including heavy metals, approaches to alleviate heavy metal stress, microbial approaches to remove heavy metals, and phytoremediation. Provides an overview of the effect of different heavy metals on growth, biochemical reactions, and physiology of various plants Serves as a reference guide for available techniques, challenges, and possible solutions in heavy metal remediation Covers sustainable technologies in uptake and removal of heavy metals




Effect of Heavy Metal Pollution on Plants


Book Description

Trace metals occur as natural constituents of the earth's crust, and are ever present constituents of soils, natural waters and living matter. The biological significance of this disparate assemblage of elements has gradually been uncovered during the twentieth century; the resultant picture is one of ever-increasing complexity. Several of these elements have been demonstrated to be essential to the functions of living organisms, others appear to only interact with living matter in a toxic manner, whilst an ever-decreasing number do not fall conveniently into either category. When the interactions between trace metals and plants are considered, one must take full account of the known chemical properties of each element. Consideration must be given to differences in chemical reactivity, solubility and to interactions with other inorganic and organic molecules. A clear understanding of the basic chemical properties of an element of interest is an essential pre-requisite to any subsequent consideration of its biological significance. Due consideration to basic chemical considerations is a theme which runs through the collection of chapters in both volumes.




Heavy Metal Stress in Plants


Book Description

Heavy metal phytotoxicity has been known for more than a century. However, research in the past years has confirmed the immense damage by metal pollution to plants, the soil and ultimately to humans. By reviewing both field and laboratory work, this book deals with the various functional and ecological aspects of heavy metal stress on plants and outlines the scope for future research and the possibilities for remediation.




Handbook of Bioremediation


Book Description

Handbook of Bioremediation: Physiological, Molecular and Biotechnological Interventions discusses the mechanisms of responding to inorganic and organic pollutants in the environment using different approaches of phytoremediation and bioremediation. Part One focuses specifically on inorganic pollutants and the use of techniques such as metallothionein-assisted remediation, phytoextraction and genetic manipulation. Part Two covers organic pollutants and consider topics such as plant enzymes, antioxidant defense systems and the remediation mechanisms of different plant species. This comprehensive volume is a must-read for researchers interested in plant science, agriculture, soil science and environmental science. The techniques covered in this book will ensure scientists have the knowledge to practice effective bioremediation techniques themselves. Provides a comprehensive review of the latest advances in bioremediation of organic and inorganic pollutants Discusses a range of different phytoremediation techniques Evaluates the role of genomics and bioinformatics within bioremediation







Plant Aquaporins


Book Description

Aquaporins are channel proteins that facilitate the diffusion of water and small uncharged solutes across cellular membranes. Plant aquaporins form a large family of highly divergent proteins that are involved in many different physiological processes. This book will summarize the recent advances regarding plant aquaporins, their phylogeny, structure, substrate specificity, mechanisms of regulation and roles in various important physiological processes related to the control of water flow and small solute distribution at the cell, tissue and plant level in an ever-changing environment.