Metallurgical and Ceramic Protective Coatings


Book Description

Surface engineering is an increasingly important field and consequently those involved need to be aware of the vast range of technologies available to modify surfaces. This text provides an up-to-date, authoritative exposition of the major condensed phase methods used for producing metallurgical and ceramic coatings. Each method is discussed thoroughly by an expert in that field. In each chapter the principle of the method, its range of applications and technical aspects involved are described. The book not only informs the reader about established technologies familiar only to specialists, but also details activity on the frontier of coating technology providing an insight into those potential technologies not yet fully developed but which should emerge in the near future.




Metallic and Ceramic Coatings


Book Description

Much of this book consists of a review of the subject, in amended form, which the authors were commissioned to write by the EEC. It should be useful to those in the fields of materials science, physics, mechanical engineering, chemical engineering, metallurgy and aerospace engineering.




Ceramic Coatings


Book Description

The main target of this book is to state the latest advancement in ceramic coatings technology in various industrial fields. The book includes topics related to the applications of ceramic coating covers in enginnering, including fabrication route (electrophoretic deposition and physical deposition) and applications in turbine parts, internal combustion engine, pigment, foundry, etc.




Ceramic Processing


Book Description

This book gives a comprehensive account on the manufacturing techniques to synchronize the desired properties of both traditional and advanced ceramics. Offers exclusive and up to date information on industrial ceramic processing equipment and approaches and discusses actual industrial practices taking a product-oriented approach It should serve as a text to answer the processing of ceramics and achieve targeted product in industrial environment.




Coatings for High-Temperature Environments


Book Description

This book addresses the recent trends in high-temperature coatings that are used to provide oxidation and wear resistance to metallic/ceramic components in extreme environments. Ceramics, intermetallics, organosilicon polymers, cermets, and other materials with great thermal stability have long been recognized for these applications. This book introduces the state of the art in coating materials and processes for high-temperature environments and identifies areas for improvement in materials selection, performance upgrades, design considerations, and manufacturing methods. The book covers a variety of high-temperature coatings prepared through various synthesis processes such as thermal spraying, physical vapor deposition, electrodeposition, and sol–gel methods. It covers corrosion/oxidation, phase stability, and thermal and mechanical behavior of high-temperature coating materials having greater thermal stability. With contributions from international researchers active in the field, this edited book features the most recent and up-to-date literature references for a broad readership consisting of academic and industrial professionals. It is suitable for graduate students as well as scientists and engineers working in the area of anti-corrosion and anti-wear resistant high-temperature coatings for industrial applications.




Nickel, Cobalt, and Their Alloys


Book Description

This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.




High Temperature Coatings


Book Description

High Temperature Coatings, Second Edition, demonstrates how to counteract the thermal effects of rapid corrosion and degradation of exposed materials and equipment that can occur under high operating temperatures. This is the first true practical guide on the use of thermally protective coatings for high-temperature applications, including the latest developments in materials used for protective coatings. It covers the make-up and behavior of such materials under thermal stress and the methods used for applying them to specific types of substrates, as well as invaluable advice on inspection and repair of existing thermal coatings. With his long experience in the aerospace gas turbine industry, the author has compiled the very latest in coating materials and coating technologies, as well as hard-to-find guidance on maintaining and repairing thermal coatings, including appropriate inspection protocols. The book is supplemented with the latest reference information and additional support to help readers find more application- and industry-type coatings specifications and uses. - Offers an overview of the underlying fundamental concepts of thermally-protective coatings, including thermodynamics, energy kinetics, crystallography and equilibrium phases - Covers essential chemistry and physics of underlying substrates, including steels, nickel-iron alloys, nickel-cobalt alloys and titanium alloys - Provides detailed guidance on a wide variety of coating types, including those used against high temperature corrosion and oxidative degradation and thermal barrier coatings




ASM Specialty Handbook


Book Description

Materials covered include carbon, alloy and stainless steels; alloy cast irons; high-alloy cast steels; superalloys; titanium and titanium alloys; refractory metals and alloys; nickel-chromium and nickel-thoria alloys; structural intermetallics; structural ceramics, cermets, and cemented carbides; and carbon-composites.




Catalog of Technical Reports


Book Description




Industrial Chemistry of Oxides for Emerging Applications


Book Description

Valuable insights into the extraction, production, and properties of a large number of natural and synthetic oxides utilized in applications worldwide from ceramics, electronic components, and coatings This handbook describes each of the major oxides chronologically—starting from the processes of extraction of ores containing oxides, their purification and transformations into pure alloyed powders, and their appropriate characterization up to the processes of formation of 2D films by such methods as PVD, CVD, and coatings by thermal spraying or complicated 3D objects by sintering and rapid prototyping. The selection of oxides has been guided by the current context of industrial applications. An important point that is considered in the book concerns the strategic aspects of oxides. Some oxides (e.g. rare earth ones) become more expensive due to the growing demand for them, others, because of the strategic importance of countries producing raw materials and the countries that are using them. Industrial Chemistry of Oxides for Emerging Applications provides readers with everything they need to know in 7 chapters that cover: technical and economical importance of oxides in present and future; fundamentals of oxides manufacturing; extraction, properties, and applications of Al2O3; extraction, properties, and applications of ZrO2; synthesis, properties, and applications of YBaCu2O7x; extraction, properties, and applications of TiO2; and synthesis, properties, and application of hydroxyapatite. Presents the extraction, production, and properties of a large fraction of oxides applications worldwide, both natural as well as synthetic multi‐oxides Covers a very important segment of many industrial processes, such as refractories and piezoelectric oxides—both applications constituting very large market segments Developed from a lecture course given by the authors for over a decade Industrial Chemistry of Oxides for Emerging Applications is an excellent text for university professors and teachers, and graduate and postgraduate students with a solid background in physics and chemistry.