New Materials for Next-Generation Commercial Transports


Book Description

The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft.




Sustainable Materials and Green Processing for Energy Conversion


Book Description

Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. - Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices - Focuses on designing of materials through green-processing concepts - Highlights challenges and opportunities in green processing of renewable materials for energy devices




Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies


Book Description

This collection offers new research findings, innovations, and industrial technological developments in extractive metallurgy, energy and environment, and materials processing. Technical topics included in the book are thermodynamics and kinetics of metallurgical reactions, electrochemical processing of materials, plasma processing of materials, composite materials, ionic liquids, thermal energy storage, energy efficient and environmental cleaner technologies and process modeling. These topics are of interest not only to traditional base ferrous and non-ferrous metal industrial processes but also to new and upcoming technologies, and they play important roles in industrial growth and economy worldwide.




Handbook of Ferroalloys


Book Description

This handbook gathers, reviews and concisely presents the core principles and varied technology involved in processing ferroalloys. Background content in thermodynamics, kinetics, heat and mass transfer is accompanied by an overview of electrical furnaces theory and practice as well as sustainability issues. The work includes detailed coverage of the major technologies of ferrosilicon, ferronickel, ferromolybdenum, ferrotungsten, ferrovanadium, ferromanganese and lesser known minor ferroalloys. Distilling the results of many years' experience in ferroalloys, Michael Gasik has assembled contributions from the worlds' foremost experts. The work is therefore a unique source for scientists, engineers and university students, exploring in depth an area which is one of the most versatile and increasingly used fields within modern metallurgy. - All-in-one source for the major ferroalloys and their metallurgical processing technologies, cutting research time otherwise spent digging through old handbooks or review articles. - In-depth discussion of the C, Si, Al-reduction, groups II-VIII of the periodic table, supporting analysis of metallurgical processing. - Contemporary coverage includes environment and energy saving issues.




Materials Processing Fundamentals 2020


Book Description

This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related to the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.




Handbook of Ferroalloys


Book Description

The word ferroalloy refers to an alloy of iron containing a significant proportion of one or more other elements like silicon, manganese, chromium, aluminum, or titanium. The main applications of ferroalloys occur in the steelmaking process. They are added to steel to improve properties like strength, ductility, and fatigue or corrosion resistance. Additionally, ferroalloys can have several other tasks, such as in refining, deoxidation, modification, and control of nonmetallic inclusions and precipitates. The production and role of ferroalloys are briefly introduced, both from a historical perspective and in light of current and future prospects. Examples of production figures, producers, and markets are presented. Recent developments and main drivers in ferroalloys processing, including energy saving, environmental issues, primary and secondary raw materials resources, and development trends in technology, are briefly discussed.




Silicon


Book Description

Silicon The expert reference on sustainable and energy-efficient production of photovoltaic-grade silicon materials Electrochemical methods, in particular molten-salt approaches, are a cost-effective, energy-efficient, and highly sustainable approach for producing solar-grade silicon. Surface micro- and nanostructuring methods for effective light harvesting, silicon electrorefining in molten salts, electrodeposition of photoresponsive films, and other related processes are likely to replace conventional carbothermic production methods. Silicon: Electrochemistry, Production, Purification and Applications presents an up-to-date summary of recent experimental and technological developments in the field, highlighting sustainable and energy-efficient processes for high-grade silicon production for a variety of photovoltaic and energy applications. Presented in a logical and concise format, this authoritative volume details the fundamental properties and technical processes of metal-grade silicon production and describes the various electrochemical methods for high-grade silicon production. Topics include silicon surface modification, chemical-physical structuring, porous and black silicon, electrochemical Si surface structuring and anodizing in molten salts, and more. Reviews the sustainable and energy-efficient production and purification of photovoltaic-grade silicon materials Summarizes recent progress in sustainable processes for high-grade silicon production Describes electrochemical methods for silicon production such as electrolysis, electrodeposition, and electrorefining Concludes with a discussion of future challenges and opportunities Written by a leading researcher in the field, Silicon: Electrochemistry, Production, Purification and Applications is a valuable resource for chemists and material scientists in academia and industry, particularly those working in sustainable energy development, photovoltaics, light harvesting efficiency, solar-to-chemical conversion, and production of solar-grade silicon, batteries, photoelectrodes, or silicon-based semiconductors.




Comprehensive Materials Processing


Book Description

Comprehensive Materials Processing, Thirteen Volume Set provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources







Green Manufacturing and Materials Processing Methods


Book Description

In this modern technological era, conserving and making better use of resources like energy, water, and other essential resources have recently been one of the main concerns for the manufacturing industry. To successfully compete against the competition, industries are replacing outdated manufacturing techniques with cutting-edge ones that are sustainable in terms of cost, energy usage, better product quality, and environmental safety. Green manufacturing has become one of the key priorities for attaining this. Green Manufacturing and Materials Processing Methods: Characterizations, Applications, and Design offers a critical review of the past work done in green manufacturing and material processing technologies. It presents recent research and development that is going on currently with green manufacturing techniques and discusses characterizations, applications, and the design aspect of materials processed through green manufacturing technologies. With a focus on the sustainability aspect, this book showcases new breakthroughs and comparisons of cutting-edge sustainable manufacturing and materials processing with currently available conventional methods. Highlights throughout the book are on improvements used in various manufacturing processes such as casting, joining, drilling, surface engineering, sintering, and composite manufacturing. This book will serve as a first-hand information source for academic researchers and industrial firms. With the help of this book, readers will have a unique opportunity to comprehend and evaluate recent advancements in green manufacturing and material processing technology. This book will be the go-to resource for individuals who desire to do research or development in the area of sustainable manufacturing and material processing technologies.