Practical HPLC Method Development


Book Description

This revision brings the reader completely up to date on the evolving methods associated with increasingly more complex sample types analyzed using high-performance liquid chromatography, or HPLC. The book also incorporates updated discussions of many of the fundamental components of HPLC systems and practical issues associated with the use of this analytical method. This edition includes new or expanded treatments of sample preparation, computer assisted method development, as well as biochemical samples, and chiral separations.




Selection of the HPLC Method in Chemical Analysis


Book Description

Selection of the HPLC Method in Chemical Analysis serves as a practical guide to users of high-performance liquid chromatography and provides criteria for method selection, development, and validation. High-performance liquid chromatography (HPLC) is the most common analytical technique currently practiced in chemistry. However, the process of finding the appropriate information for a particular analytical project requires significant effort and pre-existent knowledge in the field. Further, sorting through the wealth of published data and literature takes both time and effort away from the critical aspects of HPLC method selection. For the first time, a systematic approach for sorting through the available information and reviewing critically the up-to-date progress in HPLC for selecting a specific analysis is available in a single book. Selection of the HPLC Method in Chemical Analysis is an inclusive go-to reference for HPLC method selection, development, and validation. - Addresses the various aspects of practice and instrumentation needed to obtain reliable HPLC analysis results - Leads researchers to the best choice of an HPLC method from the overabundance of information existent in the field - Provides criteria for HPLC method selection, development, and validation - Authored by world-renowned HPLC experts who have more than 60 years of combined experience in the field




Analytical Method Development and Validation


Book Description

Describes analytical methods development, optimization and validation, and provides examples of successful methods development and validation in high-performance liquid chromatography (HPLC) areas. The text presents an overview of Food and Drug Administration (FDA)/International Conference on Harmonization (ICH) regulatory guidelines, compliance with validation requirements for regulatory agencies, and methods validation criteria stipulated by the US Pharmacopia, FDA and ICH.




HPLC Method Development for Pharmaceuticals


Book Description

High pressure, or high performance, liquid chromatography (HPLC) is the method of choice for checking purity of new drug candidates, monitoring changes during scale up or revision of synthetic procedures, evaluating new formulations, and running control/assurance of the final drug product. HPLC Method Development for Pharmaceuticals provides an extensive overview of modern HPLC method development that addresses these unique concerns. Includes a review and update of the current state of the art and science of HPLC, including theory, modes of HPLC, column chemistry, retention mechanisms, chiral separations, modern instrumentation (including ultrahigh-pressure systems), and sample preparation. Emphasis has been placed on implementation in a pharmaceutical setting and on providing a practical perspective. HPLC Method Development for Pharmaceuticals is intended to be particularly useful for both novice and experienced HPLC method development chemists in the pharmaceutical industry and for managers who are seeking to update their knowledge. - Covers the requirements for HPLC in a pharmaceutical setting including strategies for software and hardware validation to allow for use in a regulated laboratory - Provides an overview of the pharmaceutical development process (clinical phases, chemical and pharmaceutical development activities) - Discusses how HPLC is used in each phase of pharmaceutical development and how methods are developed to support activities in each phase




Method Development in Analytical HPLC


Book Description

Method Development in Analytical HPLC presents the essential information for understanding the process of developing an HPLC method of analysis. It includes foundational information related to HPLC, as well as discussion of sample types, the properties of analytes and matrices in the samples, and sample preparation. The core of the book describes the best ways for approaching method development in various types of HPLC and the criteria for method optimization and validation. This book provides clear guidance for adopting analytical methods from the literature and describes the development of original methods with selection of the suitable type of HPLC, of specific columns, mobile phase, and detection techniques with an emphasis on the use of mass spectrometry for detection, as well as optimization and validation of the chosen analytical method. The book includes useful details on method development for specific types of chromatography such as RP-HPLC, HILIC, ion exchange, size exclusion, and chiral. Method Development in Analytical HPLC also includes information about green chemistry in analytical methods, computer assisted method development, and other key contemporary aspects of the subject. - Offers a systematic and logical presentation of the foundational of analytical HPLC - Goes in-depth on method development for specific types of chromatography such as RP-HPLC, HILIC, ion exchange, and size exclusion - Includes methods with an emphasis on the use of mass spectrometry for detection




High-Performance Gradient Elution


Book Description

Gradient elution demystified Of the various ways in which chromatography is applied today, few have been as misunderstood as the technique of gradient elution, which presents many challenges compared to isocratic separation. When properly explained, however, gradient elution can be less difficult to understand and much easier to use than often assumed. Written by two well-known authorities in liquid chromatography, High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model takes the mystery out of the practice of gradient elution and helps remove barriers to the practical application of this important separation technique. The book presents a systematic approach to the current understanding of gradient elution, describing theory, methodology, and applications across many of the fields that use liquid chromatography as a primary analytical tool. This up-to-date, practical, and comprehensive treatment of gradient elution: * Provides specific, step-by-step recommendations for developing a gradient separation for any sample * Describes the best approach for troubleshooting problems with gradient methods * Guides the reader on the equipment used for gradient elution * Lists which conditions should be varied first during method development, and explains how to interpret scouting gradients * Explains how to avoid problems in transferring gradient methods With a focus on the use of linear solvent strength (LSS) theory for predicting gradient LC behavior and separations by reversed-phase HPLC, High-Performance Gradient Elution gives every chromatographer access to this useful tool.




Modern HPLC for Practicing Scientists


Book Description

A comprehesive yet concise guide to Modern HPLC Written for practitioners by a practitioner, Modern HPLC for Practicing Scientists is a concise text which presents the most important High-Performance Liquid Chromatography (HPLC) fundamentals, applications, and developments. It describes basic theory and terminology for the novice, and reviews relevant concepts, best practices, and modern trends for the experienced practitioner. Moreover, the book serves well as an updated reference guide for busy laboratory analysts and researchers. Topics covered include: HPLC operation Method development Maintenance and troubleshooting Modern trends in HPLC such as quick-turnaround and "greener" methods Regulatory aspects While broad in scope, this book focuses particularly on reversed-phase HPLC, the most common separation mode, and on applications for the pharmaceutical industry, the largest user segment. Accessible to both novice and intermedate HPLC users, information is delivered in a straightforward manner illustrated with an abundance of diagrams, chromatograms, tables, and case studies, and supported with selected key references and Web resources. With intuitive explanations and clear figures, Modern HPLC for Practicing Scientists is an essential resource for practitioners of all levels who need to understand and utilize this versatile analytical technology.




Introduction to Modern Liquid Chromatography


Book Description

The latest edition of the authoritative reference to HPLC High-performance liquid chromatography (HPLC) is today the leading technique for chemical analysis and related applications, with an ability to separate, analyze, and/or purify virtually any sample. Snyder and Kirkland's Introduction to Modern Liquid Chromatography has long represented the premier reference to HPLC. This Third Edition, with John Dolan as added coauthor, addresses important improvements in columns and equipment, as well as major advances in our understanding of HPLC separation, our ability to solve problems that were troublesome in the past, and the application of HPLC for new kinds of samples. This carefully considered Third Edition maintains the strengths of the previous edition while significantly modifying its organization in light of recent research and experience. The text begins by introducing the reader to HPLC, its use in relation to other modern separation techniques, and its history, then leads into such specific topics as: The basis of HPLC separation and the general effects of different experimental conditions Equipment and detection The column—the "heart" of the HPLC system Reversed-phase separation, normal-phase chromatography, gradient elution, two-dimensional separation, and other techniques Computer simulation, qualitative and quantitative analysis, and method validation and quality control The separation of large molecules, including both biological and synthetic polymers Chiral separations, preparative separations, and sample preparation Systematic development of HPLC separations—new to this edition Troubleshooting tricks, techniques, and case studies for both equipment and chromatograms Designed to fulfill the needs of the full range of HPLC users, from novices to experts, Introduction to Modern Liquid Chromatography, Third Edition offers the most up-to-date, comprehensive, and accessible survey of HPLC methods and applications available.




HPLC for Pharmaceutical Scientists


Book Description

HPLC for Pharmaceutical Scientists is an excellent book for both novice and experienced pharmaceutical chemists who regularly use HPLC as an analytical tool to solve challenging problems in the pharmaceutical industry. It provides a unified approach to HPLC with an equal and balanced treatment of the theory and practice of HPLC in the pharmaceutical industry. In-depth discussion of retention processes, modern HPLC separation theory, properties of stationary phases and columns are well blended with the practical aspects of fast and effective method development and method validation. Practical and pragmatic approaches and actual examples of effective development of selective and rugged HPLC methods from a physico-chemical point of view are provided. This book elucidates the role of HPLC throughout the entire drug development process from drug candidate inception to marketed drug product and gives detailed specifics of HPLC application in each stage of drug development. The latest advancements and trends in hyphenated and specialized HPLC techniques (LC-MS, LC-NMR, Preparative HPLC, High temperature HPLC, high pressure liquid chromatography) are also discussed.




Software-assisted Method Development in High Performance Liquid Chromatography


Book Description

This handbook gives a general overview of the possibilities in recent developments in chromatographic retention modeling. As a result of the latest developments in modeling software, several new features are now accessible, opening a new level in HPLC method development. Many of these current possibilities in software assisted liquid chromatographic method modeling for analytical purposes are presented. Several modes of chromatography, including Reversed-Phase Liquid Chromatography (RPLC), Ion Exchange Chromatography (IEX), Hydrophobic Interaction Chromatography (HIC), and Hydrophilic Interaction Liquid Chromatography (HILIC) are explained in detail. For all these chromatographic modes, the most important variables for tuning retention and selectivity are exposed. Beside the industrial and practical benefits of retention modeling, the possibilities in teaching and education are also illustrated. Finally, numerous representative industrial examples are shown, to highlight the benefits, time and cost savings offered by state-of-the-art software assisted HPLC method development.