Methodologies Of Using Neural Network And Fuzzy Logic Technologies For Motor Incipient Fault Detection


Book Description

Motor monitoring, incipient fault detection, and diagnosis are important and difficult topics in the engineering field. These topics deal with motors ranging from small DC motors used in intensive care units to the huge motors used in nuclear power plants. With proper machine monitoring and fault detection schemes, improved safety and reliability can be achieved for different engineering system operations. The importance of incipient fault detection can be found in the cost saving which can be obtained by detecting potential machine failures before they occur. Non-invasive, inexpensive, and reliable fault detection techniques are often preferred by many engineers. A large number of techniques, such as expert system approaches and vibration analysis, have been developed for motor fault detection purposes. Those techniques have achieved a certain degree of success. However, due to the complexity and importance of the systems, there is a need to further improve existing fault detection techniques.A major key to the success in fault detection is the ability to use appropriate technology to effectively fuse the relevant information to provide accurate and reliable results. The advance in technology will provide opportunities for improving existing fault detection schemes. With the maturing technology of artificial neural network and fuzzy logic, the motor fault detection problem can be solved using an innovative approach based on measurements that are easily accessible, without the need for rigorous mathematical models. This approach can identify and aggregate the relevant information for accurate and reliable motor fault detection. This book will introduce the neccessary concepts of neural network and fuzzy logic, describe the advantages and challenges of using these technologies to solve motor fault detection problems, and discuss several design considerations and methodologies in applying these techniques to motor incipient fault detection.




Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection


Book Description

Motor monitoring, incipient fault detection, and diagnosis are important and difficult topics in the engineering field. These topics deal with motors ranging from small DC motors used in intensive care units to the huge motors used in nuclear power plants. With proper machine monitoring and fault detection schemes, improved safety and reliability can be achieved for different engineering system operations. The importance of incipient fault detection can be found in the cost saving which can be obtained by detecting potential machine failures before they occur. Non-invasive, inexpensive, and reliable fault detection techniques are often preferred by many engineers. A large number of techniques, such as expert system approaches and vibration analysis, have been developed for motor fault detection purposes. Those techniques have achieved a certain degree of success. However, due to the complexity and importance of the systems, there is a need to further improve existing fault detection techniques.A major key to the success in fault detection is the ability to use appropriate technology to effectively fuse the relevant information to provide accurate and reliable results. The advance in technology will provide opportunities for improving existing fault detection schemes. With the maturing technology of artificial neural network and fuzzy logic, the motor fault detection problem can be solved using an innovative approach based on measurements that are easily accessible, without the need for rigorous mathematical models. This approach can identify and aggregate the relevant information for accurate and reliable motor fault detection. This book will introduce the neccessary concepts of neural network and fuzzy logic, describe the advantages and challenges of using these technologies to solve motor fault detection problems, and discuss several design considerations and methodologies in applying these techniques to motor incipient fault detection.




Fault Diagnosis


Book Description

This comprehensive work presents the status and likely development of fault diagnosis, an emerging discipline of modern control engineering. It covers fundamentals of model-based fault diagnosis in a wide context, providing a good introduction to the theoretical foundation and many basic approaches of fault detection.







Application of Signal Processing Tools and Artificial Neural Network in Diagnosis of Power System Faults


Book Description

Explores methods of fault identification through programming and simulation in MATLAB Examines signal processing tools and their applications with examples Provides knowledge of artificial neural networks and their applications with illustrations Uses PNN and BPNN to identify the different types of faults and obtain their corresponding locations Discusses the programming of signal processing using Wavelet Transform and S-Transform







Knowledge-Based Intelligent Information and Engineering Systems


Book Description

The three-volume set LNAI 3213, LNAI 3214, and LNAI 3215 constitutes the refereed proceedings of the 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2004, held in Wellington, New Zealand in September 2004. The over 450 papers presented were carefully reviewed and selected from numerous submissions. The papers present a wealth of original research results from the field of intelligent information processing in the broadest sense; among the areas covered are artificial intelligence, computational intelligence, cognitive technologies, soft computing, data mining, knowledge processing, various new paradigms in biologically inspired computing, and applications in various domains like bioinformatics, finance, signal processing etc.




Soft Computing in Industrial Electronics


Book Description

This volume provides practicing engineers with new solutions to demanding real-world problems. It presents applications of soft computing to the field of industrial electronics in two categories, electric power applications and emerging applications.




Fault Detection and Diagnosis Using Hybrid Artificial Neural Network Based Method


Book Description

This thesis proposes a novel approach to fault detection and diagnosis (FDD) that is focused on artificial neural network (ANN). Unlike traditional methods for FDD, neural networks can take advantage of large amounts of complex process data and extract core features to help detect and diagnose faults. In the first part of this work, a hybrid model was developed to improve efficiency and feasibility of neural networks by combining Kernel Principal Analysis (kPCA) and deep neural network. The hybrid model was successfully validated by Tennessee Eastman Process. The second part of the research focuses on a specific application to gas leak detection and classification. In this scenario, a convolutional network (ConvNet) was used as a feature extraction tool prior to network training due to the visual nature of data. The model was shown to accurately predict leaks and leak sizes; furthermore, further model optimizations were performed and evaluated. The proposed approach is superior to other FDD approaches due to its performance and optimization flexibility.




On-line Incipient Fault Detection in Single-phase Squirrel Cage Using Artificial Intelligence


Book Description

This project creates and develops an artificial neural network that is capable to determine the condition of a motor whether it is in a healthy state or fault state. All of the data used to train the artificial neural network is obtained by using the result from the simulation of MATLAB Simulink model that represent the real motor. The artificial neural network is trained by using radial basis function neural network method. MATLAB is used to construct and develop Graphical User Interface and interface it with the artificial neural network created. By doing so, the user will be able to test the neural network created with ease of using the Graphical User Interface.