Methods and Applications of Statistics in Business, Finance, and Management Science


Book Description

Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume presents the tools and techniques that are essential for carrying out best practices in the modern business world The collection and analysis of quantitative data drives some of the most important conclusions that are drawn in today's business world, such as the preferences of a customer base, the quality of manufactured products, the marketing of products, and the availability of financial resources. As a result, it is essential for individuals working in this environment to have the knowledge and skills to interpret and use statistical techniques in various scenarios. Addressing this need, Methods and Applications of Statistics in Business, Finance, and Management Science serves as a single, one-of-a-kind resource that guides readers through the use of common statistical practices by presenting real-world applications from the fields of business, economics, finance, operations research, and management science. Uniting established literature with the latest research, this volume features classic articles from the acclaimed Encyclopedia of Statistical Sciences, Second Edition along with brand-new contributions written by today's leading academics and practitioners. The result is a compilation that explores classic methodology and new topics, including: Analytical methods for risk management Statistical modeling for online auctions Ranking and selection in mutual funds Uses of Black-Scholes formula in finance Data mining in prediction markets From auditing and marketing to stock market price indices and banking, the presented literature sheds light on the use of quantitative methods in research relating to common financial applications. In addition, the book supplies insight on common uses of statistical techniques such as Bayesian methods, optimization, simulation, forecasting, mathematical modeling, financial time series, and data mining in modern research. Providing a blend of traditional methodology and the latest research, Methods and Applications of Statistics in Business, Finance, and Management Science is an excellent reference for researchers, managers, consultants, and students in the fields of business, management science, operations research, supply chain management, mathematical finance, and economics who must understand statistical literature and carry out quantitative practices to make smart business decisions in their everyday work.




Statistics for Business and Financial Economics


Book Description

This text integrates various statistical techniques with concepts from business, economics and finance, and demonstrates the power of statistical methods in the real world of business. This edition places more emphasis on finance, economics and accounting concepts with updated sample data.




Statistics and Data Analysis for Financial Engineering


Book Description

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.




The Role of Statistics in Business and Industry


Book Description

An insightful guide to the use of statistics for solving key problems in modern-day business and industry This book has been awarded the Technometrics Ziegel Prize for the best book reviewed by the journal in 2010. Technometrics is a journal of statistics for the physical, chemical and engineering sciences, published jointly by the American Society for Quality and the American Statistical Association. Criteria for the award include that the book brings together in one volume a body of material previously only available in scattered research articles and having the potential to significantly improve practice in engineering and science. Highlighting the relevance of statistical methods in everyday applications, The Role of Statistics in Business and Industry bridges the gap between the tools of statistics and their use in today's business world. This one-of-a-kind resource encourages the proactive use of statistics in three well-organized and succinct parts: Setting the Stage provides an introduction to statistics, with a general overview of its uses in business and industry Manufactured Product Applications explains how statistical techniques assist in designing, building, improving, and ensuring the reliability of a wide variety of manufactured products such as appliances, plastic materials, aircraft engines, and locomotives Other Applications describe the role of statistics in pharmaceuticals, finance, and business services, as well as more specialized areas including the food, semiconductor, and communications industries This book is truly unique in that it first describes case studies and key business problems, and then shows how statistics is used to address them, while most literature on the topic does the reverse. This approach provides a comprehensive understanding of common issues and the most effective methods for their treatment. Each chapter concludes with general questions that allow the reader to test their understanding of the presented statistical concepts as well as technical questions that raise more complex issues. An extensive FTP site provides additional material, including solutions to some of the applications. With its accessible style and real-world examples, The Role of Statistics in Business and Industry is a valuable supplement for courses on applied statistics and statistical consulting at the upper-undergraduate and graduate levels. It is also an ideal resource for early-career statisticians and practitioners who would like to learn the value of applying statistics to their everyday work.




Methods and Applications of Statistics in the Atmospheric and Earth Sciences


Book Description

Explore the classic and cutting-edge quantitative methods for understanding environmental science research Based on the multifaceted 16-volume Encyclopedia of Statistical Sciences, Second Edition, Methods and Applications of Statistics in the Atmospheric and Earth Sciences offers guidance on the application of statistical methods for conducting research in these fields of study. With contributions from more than 100 leading experts in academia and industry, this volume combines key articles from the Encyclopedia with newly developed topics addressing some of the more critical issues, including pollution, droughts, and volcanic activity. Readers will gain a thorough understanding of cutting-edge methods for the acquisition and analysis of data across a wide range of subject areas, from geophysics, geology, and biogeography to meteorology, forestry, agriculture, animal science, and ornithology. The book features new and updated content on quantitative methods and their use in understanding the latest topics in social research, including: Drought Analysis and Forecasting Childhood Obesity Ranked Set Sampling Methodology for Environmental Data Species Richness and Shared Species Richness Geographic Information Systems Each contribution offers authoritative yet easily accessible coverage of statistical concepts. With updated references and discussion of emerging topics, readers are provided with the various statistical methods, techniques, strategies, and applications that are essential for tackling critical issues in environmental science research. Featuring a balance of classical and cutting-edge methodologies, Methods and Applications of Statistics in the Atmospheric and Earth Sciences is an excellent resource for researchers, professionals, and students in the fields of sociology, psychology, philosophy, education, political science, and the related disciplines who would like to learn about the uses of statistics in gathering, reporting, and analyzing data.




Statistical Models and Methods for Financial Markets


Book Description

The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.




Applied Statistics for Social and Management Sciences


Book Description

This book addresses the application of statistical techniques and methods across a wide range of disciplines. While its main focus is on the application of statistical methods, theoretical aspects are also provided as fundamental background information. It offers a systematic interpretation of results often discovered in general descriptions of methods and techniques such as linear and non-linear regression. SPSS is also used in all the application aspects. The presentation of data in the form of tables and graphs throughout the book not only guides users, but also explains the statistical application and assists readers in interpreting important features. The analysis of statistical data is presented consistently throughout the text. Academic researchers, practitioners and other users who work with statistical data will benefit from reading Applied Statistics for Social and Management Sciences.




Statistics of Financial Markets


Book Description

Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.




Applied Data Mining


Book Description

Data mining can be defined as the process of selection, explorationand modelling of large databases, in order to discover models andpatterns. The increasing availability of data in the currentinformation society has led to the need for valid tools for itsmodelling and analysis. Data mining and applied statistical methodsare the appropriate tools to extract such knowledge from data.Applications occur in many different fields, including statistics,computer science, machine learning, economics, marketing andfinance. This book is the first to describe applied data mining methodsin a consistent statistical framework, and then show how they canbe applied in practice. All the methods described are eithercomputational, or of a statistical modelling nature. Complexprobabilistic models and mathematical tools are not used, so thebook is accessible to a wide audience of students and industryprofessionals. The second half of the book consists of nine casestudies, taken from the author's own work in industry, thatdemonstrate how the methods described can be applied to realproblems. Provides a solid introduction to applied data mining methods ina consistent statistical framework Includes coverage of classical, multivariate and Bayesianstatistical methodology Includes many recent developments such as web mining,sequential Bayesian analysis and memory based reasoning Each statistical method described is illustrated with real lifeapplications Features a number of detailed case studies based on appliedprojects within industry Incorporates discussion on software used in data mining, withparticular emphasis on SAS Supported by a website featuring data sets, software andadditional material Includes an extensive bibliography and pointers to furtherreading within the text Author has many years experience teaching introductory andmultivariate statistics and data mining, and working on appliedprojects within industry A valuable resource for advanced undergraduate and graduatestudents of applied statistics, data mining, computer science andeconomics, as well as for professionals working in industry onprojects involving large volumes of data - such as in marketing orfinancial risk management.




Computational and Statistical Methods for Analysing Big Data with Applications


Book Description

Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate