Methods And Techniques For Proving Inequalities: In Mathematical Olympiad And Competitions


Book Description

In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they won the first place almost every year.The authors are coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book explains many basic techniques for proving inequalities such as direct comparison, method of magnifying and reducing, substitution method, construction method, and so on.




Inequalities


Book Description

This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving inequalities. It is written for all middle and high-school students, as well as for graduate and undergraduate students. School teachers and trainers for mathematical competitions will also gain benefit from this book.




Inequalities


Book Description

This book is intended for the Mathematical Olympiad students who wish to prepare for the study of inequalities, a topic now of frequent use at various levels of mathematical competitions. In this volume we present both classic inequalities and the more useful inequalities for confronting and solving optimization problems. An important part of this book deals with geometric inequalities and this fact makes a big difference with respect to most of the books that deal with this topic in the mathematical olympiad. The book has been organized in four chapters which have each of them a different character. Chapter 1 is dedicated to present basic inequalities. Most of them are numerical inequalities generally lacking any geometric meaning. However, where it is possible to provide a geometric interpretation, we include it as we go along. We emphasize the importance of some of these inequalities, such as the inequality between the arithmetic mean and the geometric mean, the Cauchy-Schwarz inequality, the rearrangementinequality, the Jensen inequality, the Muirhead theorem, among others. For all these, besides giving the proof, we present several examples that show how to use them in mathematical olympiad problems. We also emphasize how the substitution strategy is used to deduce several inequalities.




Basics of Olympiad Inequalities


Book Description

More than a decade ago I published some notes on inequalities on the WWW with the same title as this book aimed for mathematical olympiad preparation. I do not have specific data on how widespread it became. However, search results on the WWW, publication data on ResearchGate and occasional emails from teachers and students gave me evidence that it had indeed spread worldwide. While I was greatly overwhelmed and humbled that so many people across the world read my notes and presumably found them useful, I also felt it necessary to write a more detailed and improved version. This culminated in the publication of this book. While the main topics from the original notes have not changed, this book does contain more details and explanations. I therefore hope that it will be even more useful to everyone.




A First Step To Mathematical Olympiad Problems


Book Description

See also A SECOND STEP TO MATHEMATICAL OLYMPIAD PROBLEMS The International Mathematical Olympiad (IMO) is an annual international mathematics competition held for pre-collegiate students. It is also the oldest of the international science olympiads, and competition for places is particularly fierce. This book is an amalgamation of the first 8 of 15 booklets originally produced to guide students intending to contend for placement on their country's IMO team. The material contained in this book provides an introduction to the main mathematical topics covered in the IMO, which are: Combinatorics, Geometry and Number Theory. In addition, there is a special emphasis on how to approach unseen questions in Mathematics, and model the writing of proofs. Full answers are given to all questions. Though A First Step to Mathematical Olympiad Problems is written from the perspective of a mathematician, it is written in a way that makes it easily comprehensible to adolescents. This book is also a must-read for coaches and instructors of mathematical competitions.




Sequences And Mathematical Induction:in Mathematical Olympiad And Competitions (2nd Edition)


Book Description

In China, lots of excellent maths students takes an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years, China's IMO Team has achieved outstanding results — they have won the first place almost every year.The author is one of the senior coaches of China's IMO National Team, he is the headmaster of Shanghai senior high school which is one of the best high schools of China. In the past decade, the students of this school have won the IMO gold medals almost every year.The author attempts to use some common characteristics of sequence and mathematical induction to fundamentally connect Math Olympiad problems to particular branches of mathematics. In doing so, the author hopes to reveal the beauty and joy involved with math exploration and at the same time, attempts to arouse readers' interest of learning math and invigorate their courage to challenge themselves with difficult problems.




Geometric Inequalities


Book Description

This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities.




Selected Problems of the Vietnamese Mathematical Olympiad (1962-2009)


Book Description

Vietnam has actively organized the National Competition in Mathematics and since 1962, the Vietnamese Mathematical Olympiad (VMO). On the global stage, Vietnam has also competed in the International Mathematical Olympiad (IMO) since 1974 and constantly emerged as one of the top ten. To inspire and further challenge readers, we have gathered in this book selected problems of the VMO from 1962 to 2008. A number of Selection Test problems are also included to aid in the formation and training of a national team for IMO. The book is highly useful for high school students and teachers, coaches and instructors preparing for mathematical olympiads, as well as non-experts simply interested in having the edge over their opponents in mathematical competitions.




Problems And Solutions In Mathematical Olympiad (High School 2)


Book Description

The series is edited by the head coaches of China's IMO National Team. Each volume, catering to different grades, is contributed by the senior coaches of the IMO National Team. The Chinese edition has won the award of Top 50 Most Influential Educational Brands in China.The series is created in line with the mathematics cognition and intellectual development levels of the students in the corresponding grades. All hot mathematics topics of the competition are included in the volumes and are organized into chapters where concepts and methods are gradually introduced to equip the students with necessary knowledge until they can finally reach the competition level.In each chapter, well-designed problems including those collected from real competitions are provided so that the students can apply the skills and strategies they have learned to solve these problems. Detailed solutions are provided selectively. As a feature of the series, we also include some solutions generously offered by the members of Chinese national team and national training team.




Euclidean Geometry in Mathematical Olympiads


Book Description

This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.