Bioimage Data Analysis Workflows


Book Description

This Open Access textbook provides students and researchers in the life sciences with essential practical information on how to quantitatively analyze data images. It refrains from focusing on theory, and instead uses practical examples and step-by step protocols to familiarize readers with the most commonly used image processing and analysis platforms such as ImageJ, MatLab and Python. Besides gaining knowhow on algorithm usage, readers will learn how to create an analysis pipeline by scripting language; these skills are important in order to document reproducible image analysis workflows. The textbook is chiefly intended for advanced undergraduates in the life sciences and biomedicine without a theoretical background in data analysis, as well as for postdocs, staff scientists and faculty members who need to perform regular quantitative analyses of microscopy images.




Digital Pathology


Book Description

This book constitutes the refereed proceedings of the 15th European Congress on Digital Pathology, ECDP 2019, held in Warwick, UK in April 2019. The 21 full papers presented in this volume were carefully reviewed and selected from 30 submissions. The congress theme will be Accelerating Clinical Deployment, with a focus on computational pathology and leveraging the power of big data and artificial intelligence to bridge the gaps between research, development, and clinical uptake.




Biomedical Data Mining for Information Retrieval


Book Description

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.




Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015


Book Description

The three-volume set LNCS 9349, 9350, and 9351 constitutes the refereed proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, held in Munich, Germany, in October 2015. Based on rigorous peer reviews, the program committee carefully selected 263 revised papers from 810 submissions for presentation in three volumes. The papers have been organized in the following topical sections: quantitative image analysis I: segmentation and measurement; computer-aided diagnosis: machine learning; computer-aided diagnosis: automation; quantitative image analysis II: classification, detection, features, and morphology; advanced MRI: diffusion, fMRI, DCE; quantitative image analysis III: motion, deformation, development and degeneration; quantitative image analysis IV: microscopy, fluorescence and histological imagery; registration: method and advanced applications; reconstruction, image formation, advanced acquisition - computational imaging; modelling and simulation for diagnosis and interventional planning; computer-assisted and image-guided interventions.




Bioimage Data Analysis Workflows ‒ Advanced Components and Methods


Book Description

This open access textbook aims at providing detailed explanations on how to design and construct image analysis workflows to successfully conduct bioimage analysis. Addressing the main challenges in image data analysis, where acquisition by powerful imaging devices results in very large amounts of collected image data, the book discusses techniques relying on batch and GPU programming, as well as on powerful deep learning-based algorithms. In addition, downstream data processing techniques are introduced, such as Python libraries for data organization, plotting, and visualizations. Finally, by studying the way individual unique ideas are implemented in the workflows, readers are carefully guided through how the parameters driving biological systems are revealed by analyzing image data. These studies include segmentation of plant tissue epidermis, analysis of the spatial pattern of the eye development in fruit flies, and the analysis of collective cell migration dynamics. The presented content extends the Bioimage Data Analysis Workflows textbook (Miura, Sladoje, 2020), published in this same series, with new contributions and advanced material, while preserving the well-appreciated pedagogical approach adopted and promoted during the training schools for bioimage analysis organized within NEUBIAS – the Network of European Bioimage Analysts. This textbook is intended for advanced students in various fields of the life sciences and biomedicine, as well as staff scientists and faculty members who conduct regular quantitative analyses of microscopy images.




Focus on Bio-Image Informatics


Book Description

This volume of Advances Anatomy Embryology and Cell Biology focuses on the emerging field of bio-image informatics, presenting novel and exciting ways of handling and interpreting large image data sets. A collection of focused reviews written by key players in the field highlights the major directions and provides an excellent reference work for both young and experienced researchers.




Frontiers In Bioimage Informatics Methodology


Book Description

This unique compendium provides state-of-the-art computational methodology and applications in bioimage informatics. It covers cutting-edge technology developments in biological image analysis, where images come from new modalities and are often large scale, high throughput and high dimensional. The book reflects advances in intelligent algorithms for tasks such as biological image segmentation, reconstruction, and object tracking.Contributed by world renowned researchers, this useful reference text presents case studies that can potentially help readers find approaches and resources to address their imminent scientific problems.




Computational Systems Bioinformatics - Methods And Biomedical Applications


Book Description

Computational systems biology is a new and rapidly developing field of research, concerned with understanding the structure and processes of biological systems at the molecular, cellular, tissue, and organ levels through computational modeling as well as novel information theoretic data and image analysis methods. By focusing on either information processing of biological data or on modeling physical and chemical processes of biosystems, and in combination with the recent breakthrough in deciphering the human genome, computational systems biology is guaranteed to play a central role in disease prediction and preventive medicine, gene technology and pharmaceuticals, and other biotechnology fields.This book begins by introducing the basic mathematical, statistical, and data mining principles of computational systems biology, and then presents bioinformatics technology in microarray and sequence analysis step-by-step. Offering an insightful look into the effectiveness of the systems approach in computational biology, it focuses on recurrent themes in bioinformatics, biomedical applications, and future directions for research.




Standard and Super-Resolution Bioimaging Data Analysis


Book Description

A comprehensive guide to the art and science of bioimaging data acquisition, processing and analysis Standard and Super-Resolution Bioimaging Data Analysis gets newcomers to bioimage data analysis quickly up to speed on the mathematics, statistics, computing hardware and acquisition technologies required to correctly process and document data. The past quarter century has seen remarkable progress in the field of light microscopy for biomedical science, with new imaging technologies coming on the market at an almost annual basis. Most of the data generated by these systems is image-based, and there is a significant increase in the content and throughput of these imaging systems. This, in turn, has resulted in a shift in the literature on biomedical research from descriptive to highly-quantitative. Standard and Super-Resolution Bioimaging Data Analysis satisfies the demand among students and research scientists for introductory guides to the tools for parsing and processing image data. Extremely well illustrated and including numerous examples, it clearly and accessibly explains what image data is and how to process and document it, as well as the current resources and standards in the field. A comprehensive guide to the tools for parsing and processing image data and the resources and industry standards for the biological and biomedical sciences Takes a practical approach to image analysis to assist scientists in ensuring scientific data are robust and reliable Covers fundamental principles in such a way as to give beginners a sound scientific base upon which to build Ideally suited for advanced students having only limited knowledge of the mathematics, statistics and computing required for image data analysis An entry-level text written for students and practitioners in the bioscience community, Standard and Super-Resolution Bioimaging Data Analysis de-mythologises the vast array of image analysis modalities which have come online over the past decade while schooling beginners in bioimaging principles, mathematics, technologies and standards.