Methods for Film Synthesis and Coating Procedures


Book Description

In recent years, thin layer technologies, including fabrication of different micro- and nano-structures, have undergone tremendous progress. Such layers are made for a variety of industrial and scientific applications. Due to the extreme physico-chemical properties of the available structures, there are many promising applications (eg, due to biocompatibility, biological and medical applications between living tissues and materials). Pre-tailored special surface layers/structures could be realized for implants in dental, neurological and orthopedic applications. There are also different methods that have been applied to produce special mono and multilayers with extreme electrical end magnetic properties. Also some methods have been developed to produce surface structure applications eg, for environmental applications with necessary resistivity and anti-corrosion properties.Some theoretical/mathematical simulation methods have also been developed for better compatibility of theory with experiments.This book consists of 10 chapters describing the physico-chemical base of deposition and coating microfabrication, thus providing some overview on how to measure the physical and chemical parameters of fabricated structures and how to solve compatibility and fitting problems, etc.




Chemical Solution Deposition of Functional Oxide Thin Films


Book Description

This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.




Chemical Solution Synthesis for Materials Design and Thin Film Device Applications


Book Description

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing




Thin Film Processes


Book Description

The book Thin Film Processes - Artifacts on Surface Phenomena and Technological Facets presents topics on global advancements in theoretical and experimental facts, instrumentation and practical applications of thin-film material perspectives and its applications. The aspect of this book is associated with the thin-film physics, the methods of deposition, optimization parameters and its wide technological applications. This book is divided into three main sections: Thin Film Deposition Methods: A Synthesis Perspective; Optimization Parameters in the Thin Film Science and Application of Thin Films: A Synergistic Outlook. Collected chapters provide applicable knowledge for a wide range of readers: common men, students and researchers. It was constructed by experts in diverse fields of thin-film science and technology from over 15 research institutes across the globe.




Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications


Book Description

Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications discusses in detail, the recent trends in designing, fabricating and manufacturing of smart coatings and thin films for future high-tech. industrial applications related to transportation, aerospace and biomedical engineering. Chapters cover fundamental aspects and diverse approaches used to fabricate smart self-healing anti-corrosion coatings, shape-memory coatings, polymeric and nano-bio-ceramic cotings, bio-inspired and stimuli-responsive coatings for smart surfaces with antibacterial activkity and controlled wettability, and electrically conductive coatings and their emerging applications. With the emphasis on advanced methodologies and recent emerging applications of smart multifunctional coatings and thin films, this book is essential reading for materials scientists and rsearchers working in chemical sciences, advanced materials, sensors, pharmaceutical and biomedical engineering. - Discusses the most recent advances and innovations in smart multifunctional coatings and thin films in the transportation, aerospace and biomedical engineering industries - Highlights the synthesis methods, processing, testing and characterization of smart coatings and thin films - Reviews the current prospects and future trends within the industry




Optical Coating Technology


Book Description

Baumeister organizes this book around the key subjects associated with functions of optical thin film performance, and provides a valuable resource in the field of thin film technology. The information is widely backed up with citations to patents and published literature. The author draws from 25 years of experience teaching classes at the UCLA Extension Program, and at companies worldwide to answer questions, such as: what are the conventions for a given analysis formalism? and, what other design approaches have been tried for this application?




Modern Technologies for Creating the Thin-film Systems and Coatings


Book Description

Development of the thin film and coating technologies (TFCT) made possible the technological revolution in electronics and through it the revolution in IT and communications in the end of the twentieth century. Now, TFCT penetrated in many sectors of human life and industry: biology and medicine; nuclear, fusion, and hydrogen energy; protection against corrosion and hydrogen embrittlement; jet engine; space materials science; and many others. Currently, TFCT along with nanotechnologies is the most promising for the development of almost all industries. The 20 chapters of this book present the achievements of thin-film technology in many areas mentioned above but more than any other in medicine and biology and energy saving and energy efficiency.




Advances in Thin Films, Nanostructured Materials, and Coatings


Book Description

This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.




Multilayer Thin Films


Book Description

This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties. Of late, graphene and graphene-related derivatives have been proven as the most versatile two-dimensional nanomaterials with superb mechanical, electrical, electronic, optical, and magnetic properties. To understand the in-depth technology, an effort has been made to explain the basics of nano dimensional materials. The importance of nano particles in various aspects of nano technology is clearly indicated. There is more than one chapter describing the use of nanomaterials as sensors. In this volume, an effort has been made to clarify the use of such materials from non-conductor to highly conducting species. It is expected that this book will be useful to the postgraduate and research students as this is a multidisciplinary subject.




Handbook of Deposition Technologies for Films and Coatings


Book Description

This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.