Methods of Algebraic Geometry: Volume 1


Book Description

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.




Methods of Algebraic Geometry: Volume 3


Book Description

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.




Methods of Algebraic Geometry


Book Description




Methods of Algebraic Geometry: Volume 2


Book Description

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.




Methods of Algebraic Geometry in Control Theory: Part I


Book Description

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik




Effective Methods in Algebraic Geometry


Book Description

On Lack of Effectiveness in Semi-algebraic Geometry.- A simple constructive proof of Canonical Resolution of Singularities.- Local Membership Problems for Polynomial Ideals.- Un Algorithme pour le Calcul des Résultants.- On algorithms for real algebraic plane curves.- Duality methods for the membership problem.- Exemples d'ensembles de Points en Position Uniforme.- Efficient Algorithms and Bounds for Wu-Ritt Characteristic Sets.- Noetherian Properties and Growth of some Associative Algebras.- Codes and Elliptic Curves.- Algorithmes - disons rapides - pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionnelles.- Complexity of Solving Systems of Linear Equations over the Rings of Differential Operators.- Membership problem, Representation problem and the Computation of the Radical for one-dimensional Ideals.- On the Complexity of Zero-dimensional Algebraic Systems.- A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals.- Algorithms for a Multiple Algebraic Extension.- Elementary constructive theory of ordered fields.- Effective real Nullstellensatz and variants.- Algorithms for the Solution of Systems of Linear Equations in Commutative Rings.- Une conjecture sur les anneaux de Chow A(G, ?) renforcée par un calcul formel.- Construction de courbes de genre 2 à partir de leurs modules.- Computing Syzygies à la Gau?-Jordan.- The non-scalar Model of Complexity in Computational Geometry.- Géométrie et Interpretations Génériques, un Algorithme.- Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms.- The tangent cone algorithm and some applications to local algebraic geometry.- Effective Methods for Systems of Algebraic Partial Differential Equations.- Finding roots of equations involving functions defined by first order algebraic differential equations.- Some Effective Methods in the Openness of Loci for Cohen-Macaulay and Gorenstein Properties.- Sign determination on zero dimensional sets.- A Classification of Finite-dimensional Monomial Algebras.- An algorithm related to compactifications of adjoint groups.- Deciding Consistency of Systems of Polynomial in Exponent Inequalities in Subexponential Time.







Using Algebraic Geometry


Book Description

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.




Polyhedral and Algebraic Methods in Computational Geometry


Book Description

Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.




Algebraic Geometry and Commutative Algebra


Book Description

Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.