Gauging What's Real


Book Description

Gauge theories have provided our most successful representations of the fundamental forces of nature. How, though, do such representations work? Interpretations of gauge theory aim to answer this question. Through understanding how a gauge theory's representations work, we are able to say what kind of world our gauge theories reveal to us. A gauge theory's representations are mathematical structures. These may be transformed among themselves while certain features remain the same. Do the representations related by such a gauge transformation merely offer alternative ways of representing the very same situation? If so, then gauge symmetry is a purely formal property since it reflects no corresponding symmetry in nature. Gauging What's Real describes the representations provided by gauge theories in both classical and quantum physics. Richard Healey defends the thesis that gauge transformations are purely formal symmetries of almost all the classes of representations provided by each of our theories of fundamental forces. He argues that evidence for classical gauge theories of forces (other than gravity) gives us reason to believe that loops rather than points are the locations of fundamental properties. In addition to exploring the prospects of extending this conclusion to the quantum gauge theories of the Standard Model of elementary particle physics, Healey assesses the difficulties faced by attempts to base such ontological conclusions on the success of these theories.




An Introduction to Gauge Theories and Modern Particle Physics


Book Description

This work presents, in two volumes, a comprehensive and unified treatment of modern theoretical and experimental particle physics at a level accessible to beginning research students. The emphasis throughout is on presenting underlying physical principles in a simple and intuitive way, and the more sophisticated methods demanded by present day research interests are introduced in a very gradual and gentle fashion. Volume 1 covers electroweak interactions, the discovery and properties of the 'new' particles, the discovery of partons and the construction and predictions of the simple parton model. Volume 2 deals at some length with CP-violation, but is mainly devoted to QCD and its application to 'hard' processes. A brief coverage of 'soft' hadronic physics is included. This work will provide a comprehensive reference and textbook for all graduate students and researchers interested in modern particle physics.




Gauging What's Real


Book Description

Gauge theories have provided our most successful representations of the fundamental forces of nature. But how do such representations work? Healey aims to answer this question, and defends a distinctive thesis which proves that loops rather than points are the locations of fundamental properties.




Lattice Gauge Theories


Book Description

- Wherever possible simple examples, which illustrate the main ideas, are provided before embarking on the actual discussion of the problem of interest - The book introduces the readers to problems of great current interest, like instantons, calorons, vortices, magnetic monopoles - QCD at finite temperature is discussed at great length, both in perturbation theory and in Monte Carlo simulations - The book contains many figures showing numerical results of pioneering work




Gauge Theories and Modern Field Theory


Book Description

This volume contains the papers presented at a September 1975 conference held a Northeastern University. The editors write that "during the past few years, there has been a large increase in the use of field theory as a framework for understanding high energy phenomena. This includes work on the structure of gauge theories, unified theories of interactions, theories of quark confinement, supersymmetry and coherent state phenomena. Several of these approaches involve innovative methods of applying field theory and perhaps some have the possibility of developing into fundamental theories. Research has been progressing at a rapid pace and whole new areas have recently sprung up... We hope that the book will be a useful reference for high energy theorists already working in this area, as well as a helpful introduction to other theorists and experimentalists who wish to learn the present status of the field."




Lattice Gauge Theories: An Introduction (Third Edition)


Book Description

This book provides a broad introduction to gauge field theories formulated on a space-time lattice, and in particular of QCD. It serves as a textbook for advanced graduate students, and also provides the reader with the necessary analytical and numerical techniques to carry out research on his own. Although the analytic calculations are sometimes quite demanding and go beyond an introduction, they are discussed in sufficient detail, so that the reader can fill in the missing steps. The book also introduces the reader to interesting problems which are currently under intensive investigation. Whenever possible, the main ideas are exemplified in simple models, before extending them to realistic theories. Special emphasis is placed on numerical results obtained from pioneering work. These are displayed in numerous figures.




Path Integral Methods in Quantum Field Theory


Book Description

The applications of functional integral methods introduced in this text for solving a range of problems in quantum field theory will prove useful for students and researchers in theoretical physics and quantum field theory.




An Introduction to Gauge Theories


Book Description

Written by world-leading experts in particle physics, this new book from Luciano Maiani and Omar Benhar, with contributions from the late Nicola Cabibbo, is based on Feynman’s path integrals. Key elements of gauge theories are described—Feynman diagrams, gauge-fixing, Faddeev-Popov ghosts—as well as renormalization in Quantum Electrodynamics. Quarks and QCD interactions are introduced. Renormalization group and high momentum behaviour of the coupling constants is discussed in QED and QCD, with asymptotic freedom derived at one-loop. These concepts are related to the Higgs boson and models of grand unification. "... an excellent introduction to the quantum theory of gauge fields and their applications to particle physics. ... It will be an excellent book for the serious student and a good reference for the professional practitioner. Let me add that, scattered through the pages, we can find occasional traces of Nicola Cabibbo's style." —John Iliopoulos, CNRS-Ecole Normale Supérieure " ... The volume ends with an illuminating description of the expectation generated by the recent discovery of the Higgs boson, combined with the lack of evidence for super-symmetric particles in the mass range 0.6-1 TeV." —Arturo Menchaca-Rocha, FinstP, Professor of Physics, Mexico’s National Autonomous University, Former President of the Mexican Academy of Sciences, Presidential Advisor "...The reader is masterfully guided through the subtleties of the quantum field theory and elementary particle physics from simple examples in Quantum Mechanics to salient details of modern theory." —Mikhail Voloshin, Professor of Physics, University of Minnesota




Introduction to Gauge Theory


Book Description

Gauge symmetry is at the heart of modern particle physics. It also makes some interesting appear-ances in condensed matter physics, particularly in the modeling of strongly cor-related electrons. In tea-ching courses in physics both at the undergraduate and graduate level, I have come to the realization that it would be a great advan-tage to the student to master the concepts of gauge invariance and gauge fields earlier than at the graduate level, which is now standard. For this reason, I have set out to put together this book. It is intended to be a basic introduction to the ideas and some of the structure of gauge field theories. I have attempted, as much as possible, to make it accessible to the physics student who has a basic familiarity with the standard under-graduate physics curriculum, elementary differential equations, classical mechanics, electricity and magnetism, quantum mechanics and the special theory of relativity. This is typical of senior undergraduate physics majors in North American universities. At least the first chapter should be easily readable to such a student. The later chapters which deal with gauge theories as quantum field theories are unavoidably more involved - no matter how you look at it, quantum field theory is a technical subject. Nevertheless, at each opportunity, I have attempted to keep the arguments as simple as possible with the hope that they are understandable to the novice reader.