Methods of Statistical Model Estimation


Book Description

Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting.The text presents algorith




Statistical Methods


Book Description

This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters




Selected Papers of Hirotugu Akaike


Book Description

The pioneering research of Hirotugu Akaike has an international reputation for profoundly affecting how data and time series are analyzed and modelled and is highly regarded by the statistical and technological communities of Japan and the world. His 1974 paper "A new look at the statistical model identification" (IEEE Trans Automatic Control, AC-19, 716-723) is one of the most frequently cited papers in the area of engineering, technology, and applied sciences (according to a 1981 Citation Classic of the Institute of Scientific Information). It introduced the broad scientific community to model identification using the methods of Akaike's criterion AIC. The AIC method is cited and applied in almost every area of physical and social science. The best way to learn about the seminal ideas of pioneering researchers is to read their original papers. This book reprints 29 papers of Akaike's more than 140 papers. This book of papers by Akaike is a tribute to his outstanding career and a service to provide students and researchers with access to Akaike's innovative and influential ideas and applications. To provide a commentary on the career of Akaike, the motivations of his ideas, and his many remarkable honors and prizes, this book reprints "A Conversation with Hirotugu Akaike" by David F. Findley and Emanuel Parzen, published in 1995 in the journal Statistical Science. This survey of Akaike's career provides each of us with a role model for how to have an impact on society by stimulating applied researchers to implement new statistical methods.




Statistical Models and Methods for Financial Markets


Book Description

The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.




Theory and Methods of Statistics


Book Description

Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource Serves as an excellent text for select master’s and PhD programs, as well as a professional reference Integrates numerous examples to illustrate advanced concepts Includes many probability inequalities useful for investigating convergence of statistical procedures




Statistical Models and Methods for Biomedical and Technical Systems


Book Description

This book deals with the mathematical aspects of survival analysis and reliability as well as other topics, reflecting recent developments in the following areas: applications in epidemiology; probabilistic and statistical models and methods in reliability; models and methods in survival analysis, longevity, aging, and degradation; accelerated life models; quality of life; new statistical challenges in genomics. The work will be useful to a broad interdisciplinary readership of researchers and practitioners in applied probability and statistics, industrial statistics, biomedicine, biostatistics, and engineering.




Mathematical and Statistical Models and Methods in Reliability


Book Description

The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.




Non-Regular Statistical Estimation


Book Description

In order to obtain many of the classical results in the theory of statistical estimation, it is usual to impose regularity conditions on the distributions under consideration. In small sample and large sample theories of estimation there are well established sets of regularity conditions, and it is worth while to examine what may follow if any one of these regularity conditions fail to hold. "Non-regular estimation" literally means the theory of statistical estimation when some or other of the regularity conditions fail to hold. In this monograph, the authors present a systematic study of the meaning and implications of regularity conditions, and show how the relaxation of such conditions can often lead to surprising conclusions. Their emphasis is on considering small sample results and to show how pathological examples may be considered in this broader framework.




Contemporary Statistical Models for the Plant and Soil Sciences


Book Description

Despite its many origins in agronomic problems, statistics today is often unrecognizable in this context. Numerous recent methodological approaches and advances originated in other subject-matter areas and agronomists frequently find it difficult to see their immediate relation to questions that their disciplines raise. On the other hand, statisticians often fail to recognize the riches of challenging data analytical problems contemporary plant and soil science provides. The first book to integrate modern statistics with crop, plant and soil science, Contemporary Statistical Models for the Plant and Soil Sciences bridges this gap. The breadth and depth of topics covered is unusual. Each of the main chapters could be a textbook in its own right on a particular class of data structures or models. The cogent presentation in one text allows research workers to apply modern statistical methods that otherwise are scattered across several specialized texts. The combination of theory and application orientation conveys ìwhyî a particular method works and ìhowî it is put in to practice. About the downloadable resources The accompanying downloadable resources are a key component of the book. For each of the main chapters additional sections of text are available that cover mathematical derivations, special topics, and supplementary applications. It supplies the data sets and SAS code for all applications and examples in the text, macros that the author developed, and SAS tutorials ranging from basic data manipulation to advanced programming techniques and publication quality graphics. Contemporary statistical models can not be appreciated to their full potential without a good understanding of theory. They also can not be applied to their full potential without the aid of statistical software. Contemporary Statistical Models for the Plant and Soil Science provides the essential mix of theory and applications of statistical methods pertinent to research in life sciences.




Introduction to Statistical Modelling


Book Description

This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.