Metrics and Methods to Assess Building Fault Detection and Diagnosis Tools


Book Description

This paper presents the research methodology and findings related to fault definition, input samples, and evaluation metrics. We discuss these findings in light of key considerations for FDD algorithm performance testing, and conclude with recommendations and suggested areas of future work.




Automated Diagnostics and Analytics for Buildings


Book Description

With the widespread availability of high-speed, high-capacity microprocessors and microcomputers with high-speed communication ability, and sophisticated energy analytics software, the technology to support deployment of automated diagnostics is now available, and the opportunity to apply automated fault detection and diagnostics to every system and piece of equipment in a facility, as well as for whole buildings, is imminent. The purpose of this book is to share information with a broad audience on the state of automated fault detection and diagnostics for buildings applications, the benefits of those applications, emerging diagnostic technology, examples of field deployments, the relationship to codes and standards, automated diagnostic tools presently available, guidance on how to use automated diagnostics, and related issues.




Fault Detection and Diagnosis in Industrial Systems


Book Description

Early and accurate fault detection and diagnosis for modern chemical plants can minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. This book presents the theoretical background and practical techniques for data-driven process monitoring. It demonstrates the application of all the data-driven process monitoring techniques to the Tennessee Eastman plant simulator, and looks at the strengths and weaknesses of each approach in detail. A plant simulator and problems allow readers to apply process monitoring techniques.







Fault Detection, Diagnosis and Prognosis


Book Description

This book presents the main concepts, state of the art, advances, and case studies of fault detection, diagnosis, and prognosis. This topic is a critical variable in industry to reach and maintain competitiveness. Therefore, proper management of the corrective, predictive, and preventive politics in any industry is required. This book complements other subdisciplines such as economics, finance, marketing, decision and risk analysis, engineering, etc. The book presents real case studies in multiple disciplines. It considers the main topics using prognostic and subdiscipline techniques. It is essential to link these topics with the areas of finance, scheduling, resources, downtime, etc. to increase productivity, profitability, maintainability, reliability, safety, and availability, and reduce costs and downtime. Advances in mathematics, modeling, computational techniques, dynamic analysis, etc. are employed analytically. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support the analysis of prognostic problems with defined constraints and requirements. The book is intended for graduate students and professionals in industrial engineering, business administration, industrial organization, operations management, applied microeconomics, and the decisions sciences, either studying maintenance or needing to solve large, specific, and complex maintenance management problems as part of their jobs. The work will also be of interest to researches from academia.




Fault Diagnosis Method Based on Improved Evidence Reasoning


Book Description

Evidence reasoning (ER) combined with dimensionless index method can be used in rotating machinery fault diagnosis. In ER algorithm, reliability is mainly obtained in two ways: distance-based method and correlation measure by set theory. In practice, the distance-based method cannot generate high-discrimination reliability in high-coincidence data like dimensionless index data. Therefore, correlation measure by set theory method is used in fault diagnosis more frequently. Because correlation measure by set theory only considers upper bound and lower bound of fault data, we add a regularization term to calculate the relationship between the inner data. Experience result shows that fault diagnosis accuracy had improved, which illustrates that the new reliability can describe data relationship better




An Assessment of the National Institute of Standards and Technology Building and Fire Research Laboratory


Book Description

A panel of experts appointed by the National Research Council assessed the scientific and technical work of the Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST). The scope of the assessment included the following criteria: (1) the technical merit of the current laboratory programs relative to the current state of the art worldwide; (2) the adequacy of the laboratory facilities, equipment, and human resources, as they affect the quality of the laboratory technical programs; and (3) the degree to which the laboratory programs in measurement science and standards achieve their stated objectives and desired impact.




Data-driven Whole Building Fault Detection and Diagnosis


Book Description

Residential and commercial buildings are responsible for more than 40% of the primary energy consumption in the United States. Energy wastes are estimated to reach 15% to 30% of total energy consumption due to malfunctioning sensors, components, and control systems, as well as degrading components in Heating, Ventilation, Air-conditioning (HVAC) systems and lighting systems in commercial buildings in the U.S. Studies have demonstrated that a large energy saving can be achieved by automated fault detection and diagnosis (AFDD) followed by corrections. Field studies have shown that, AFDD tools can help to reach energy savings by 5-30% from different systems such as HVAC systems, lighting systems, and refrigeration systems. At the same time, the deployment of AFDD tools can also significantly improve indoor air quality, reduce peak demand, and lower pollution. In buildings, many components or equipment are closely coupled in a HVAC system. Because of the coupling, a fault happening in one component might propagate and affect other components or subsystems. In this study, a whole building fault (WBF) is defined as a fault that occurs in one component or equipment but causes fault impacts (abnormalities) on other components and subsystems, or causes significant impacts on energy consumption and/or indoor air quality. Over the past decades, extensive research have been conducted on the development of component AFDD methods and tools. However, whole building AFDD methods, which can detect and diagnose a WBF, have not been well studied. Existing component level AFDD solutions often fail to detect a WBF or generate a high false alarm rate. Isolating a WBF is also very challenging by using component level AFDD solutions. Even with the extensive research, cost-effectiveness and scalability of existing AFDD methods are still not satisfactory. Therefore, the focus of this research is to develop cost-effective and scalable solutions for WBF AFDD. This research attempts to integrate data-driven methods with expert knowledge/rules to overcome the above-mentioned challenges. A suite of WBF AFDD methods have hence been developed, which include: 1) a weather and schedule based pattern matching method and feature based Principal Component Analysis (WPM-FPCA) method for whole building fault detection. The developed WPM-FPCA method successfully overcome the challenges such as the generation of accurate and dynamic baseline and data dimensionality reduction. And 2) a data-driven and expert knowledge/rule based method using both Bayesian Network (BN) and WPM for WBF diagnosis. The developed WPM-BN method includes a two-layer BN structure model and BN parameter model which are either learned from baseline data or developed from expert knowledge. Various WBFs have been artificially implemented in a real demo building. Building operation data which include baseline data, data that contain naturally-occurred faults and artificially implemented faults are collected and analyzed. Using the collected real building data, the developed methods are evaluated. The evaluation demonstrates the efficacy of the developed methods to detect and diagnose a WBF, as well as their implementation cost-effectiveness.




Fault Detection and Diagnosis in Engineering Systems


Book Description

Featuring a model-based approach to fault detection and diagnosis in engineering systems, this book contains up-to-date, practical information on preventing product deterioration, performance degradation and major machinery damage.;College or university bookstores may order five or more copies at a special student price. Price is available upon request.




Improving Diagnosis in Health Care


Book Description

Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.