The Bieberbach Conjecture


Book Description

In 1919, Bieberbach posed a seemingly simple conjecture. That ``simple'' conjecture challenged mathematicians in complex analysis for the following 68 years! In that time, a huge number of papers discussing the conjecture and its related problems were inspired. Finally in 1984, de Branges completed the solution. In 1989, Professor Gong wrote and published a short book in Chinese, The Bieberbach Conjecture, outlining the history of the related problems and de Branges' proof. The present volume is the English translation of that Chinese edition with modifications by the author. In particular, he includes results related to several complex variables. Open problems and a large number of new mathematical results motivated by the Bieberbach conjecture are included. Completion of a standard one-year graduate complex analysis course will prepare the reader for understanding the book. It would make a nice supplementary text for a topics course at the advanced undergraduate or graduate level.




Concise Calculus


Book Description

Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields.This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.




Studies in Lie Theory


Book Description

Contains new results on different aspects of Lie theory, including Lie superalgebras, quantum groups, crystal bases, representations of reductive groups in finite characteristic, and the geometric Langlands program







Random Matrices, Frobenius Eigenvalues, and Monodromy


Book Description

The main topic of this book is the deep relation between the spacings between zeros of zeta and $L$-functions and spacings between eigenvalues of random elements of large compact classical groups. This relation, the Montgomery-Odlyzko law, is shown to hold for wide classes of zeta and $L$-functions over finite fields. The book draws on and gives accessible accounts of many disparate areas of mathematics, from algebraic geometry, moduli spaces, monodromy, equidistribution, and the Weil conjectures, to probability theory on the compact classical groups in the limit as their dimension goes to infinity and related techniques from orthogonal polynomials and Fredholm determinants.




Modelling with Differential and Difference Equations


Book Description

Any student wishing to solve problems via mathematical modelling will find that this book provides an excellent introduction to the subject.




Mathematical Analysis


Book Description

* Embraces a broad range of topics in analysis requiring only a sound knowledge of calculus and the functions of one variable. * Filled with beautiful illustrations, examples, exercises at the end of each chapter, and a comprehensive index.




Mathematics in Berlin


Book Description

This little book is conceived as a service to mathematicians attending the 1998 International Congress of Mathematicians in Berlin. It presents a comprehensive, condensed overview of mathematical activity in Berlin, from Leibniz almost to the present day (without, however, including biographies of living mathematicians). Since many towering figures in mathematical history worked in Berlin, most of the chapters of this book are concise biographies. These are held together by a few survey articles presenting the overall development of entire periods of scientific life at Berlin. Overlaps between various chapters and differences in style between the chap ters were inevitable, but sometimes this provided opportunities to show different aspects of a single historical event - for instance, the Kronecker-Weierstrass con troversy. The book aims at readability rather than scholarly completeness. There are no footnotes, only references to the individual bibliographies of each chapter. Still, we do hope that the texts brought together here, and written by the various authors for this volume, constitute a solid introduction to the history of Berlin mathematics.




Integration - A Functional Approach


Book Description

This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work.




Computer Algebra Recipes


Book Description

* Contains computer algebra worksheets or "recipes" designed using MAPLE (System 10); no prior knowledge of MAPLE is assumed * Effective computational science text for first- and second-year undergraduates in mathematics, physics, engineering, chemistry, economics, biology, and pre-medicine * Examples and problems provide basis for both self-study and on-line course