Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging


Book Description

This handbook provides the most comprehensive, up-to-date and easy-to-apply information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials. It details their assemblies, structures and systems, and each chapter contains a summary of the state-of-the-art in a particular field. The book provides practical recommendations on how to apply current knowledge and technology to design and manufacture. It further describes how to operate a viable, reliable and cost-effective electronic component or photonic device, and how to make such a device into a successful commercial product.
















Materials for Optoelectronics


Book Description

Optoelectronics ranks one of the highest increasing rates among the different industrial branches. This activity is closely related to devices which are themselves extremely dependent on materials. Indeed, the history of optoelectronic devices has been following closely that of the materials. KLUWER Academic Publishers has thus rightly identified "Materials for Optoelectronics" as a good opportunity for a book in the series entitled "Electronic Materials; Science and Technology". Although a sound background in solid state physics is recommended, the authors have confined their contribution to a graduate student level, and tried to define any concept they use, to render the book as a whole as self-consistent as possible. In the first section the basic aspects are developed. Here, three chapters consider semiconductor materials for optoelectronics under various aspects. Prof. G. E. Stillman begins with an introduction to the field from the point of view of the optoelectronic market. Then he describes how III-V materials, especially the Multi Quantum Structures meet the requirements of optoelectronic functions, including the support of microelectronics for optoelectronic integrated circuits. In chapter 2, Prof.




Sapphire


Book Description

By the second half of the twentieth century, a new branch of materials science had come into being — crystalline materials research. Its appearance is linked to the emergence of advanced technologies primarily based on single crystals (bulk crystals and films). At the turn of the last century, the impending onset of the “ceramic era” was forecasted. It was believed that ceramics would play a role comparable to that of the Stone or Bronze Ages in the history of civilization. Naturally, such an assumption was hypothetical, but it showed that ceramic materials had evoked keen interest among researchers. Although sapphire traditionally has been considered a gem, it has developed into a material typical of the “ceramic era.” Widening the field of sapphire application necessitated essential improvement of its homogeneity and working characteristics and extension of the range of sapphire products, especially those with stipulated properties including a preset structural defect distribution. In the early 1980s, successful attainment of crystals with predetermined char- teristics was attributed to proper choice of the growth method. At present, in view of the fact that the requirements for crystalline products have become more str- gent, such an approach tends to be insufficient. It is clear that one must take into account the physical–chemical processes that take place during the formation of the real crystal structure, i.e., the growth mechanisms and the nature and causes of crystal imperfections.




The Physics of Opto-Electronic Materials


Book Description

The papers in this volume represent most of the contributions to the Symposium on the Physics of Opto-Electronic Materials held at the General Motors Research Lab oratories in Warren, Michigan, on October 4, 5 and 6, 1970. The purpose of this Symposium was to examine the current status of knowledge related to the controlled alteration of the optical properties of solids through exter nally-applied agencies, with the aim of assessing possible future directions of scientific effort to achieve efficient, practical control of light. Since the advent of the laser, the scientific community has been motivated to explore, with a renewed vigor, methods of modulating light, and in the last decade several applications of the electrooptic effect in single crystal solids have been real ized. During this same period of time the list of recognized optical modulation ef fects in solids (exclusive of the ordinary electrooptic effects) has grown rapidly, and recently dramatic demonstrations of light modulation by liquid crystal and ferro electric ceramic materials have captured the attention of the scientific community. Unlike the single-crystal electrooptic effects which are quite suitable for modulation of coherent laser light, these latter materials promise relatively inexpensive approaches to the modulation of light from ordinary incoherent light sources. It was these new vistas of light modulation - and how they fit into our current understanding of the optical properties of solids - that the symposium addressed.