Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator


Book Description

The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.




Synchrotron Light Sources and Free-Electron Lasers


Book Description

Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.




Free Electron Lasers 2002


Book Description

This book contains the Proceedings of the 24th International Free Electron Laser Conference and the 9th Free Electron Laser Users Workshop, which were held on September 9-13, 2002 at Argonne National Laboratory. Part I has been reprinted from Nucl. Instr. and Meth. A 507 (2003), Nos. 1-2.




The Physics of Free Electron Lasers


Book Description

The Free Electron Laser (FEL) will be a crucial tool for research and industrial applications. This book describes the physical fundamentals of FELs on the basis of classical mechanics, electrodynamics, and the kinetic theory of charged particle beams, and will be suitable for graduate students and scientists alike. After a short introduction, the book discusses the theory of the FEL amplifier and oscillator, diffraction effects in the amplifier, and waveguide FEL.







Frontiers in High Energy Density Physics


Book Description

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.




Elements of Quantum Optics


Book Description

From the reviews: "This is a book that should be found in any physics library. It is extremely useful for all graduate students, Ph.D. students and researchers interested in the quantum physics of light." Optics & Photonics News




Synchrotron Radiation and Free-Electron Lasers


Book Description

Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs




High Energy and Short Pulse Lasers


Book Description

This book gives the readers an introduction to experimental and theoretical knowledge acquired by large-scale laser laboratories that are dealing with extra-high peak power and ultrashort laser pulses for research of terawatt (TW), petawatt (PW), or near-future exawatt (EW) laser interactions, for soft X-ray sources, for acceleration of particles, or for generation of hot dense thermal plasma for the laser fusion. The other part of this book is dealing with the small-scale laser laboratories that are using for its research on commercial sources of laser radiation, nanosecond (ns), picosecond (ps), or femtosecond (fs) laser pulses, either for basic research or for more advanced applications. This book is divided into six main sections dealing with short and ultrashort laser pulses, laser-produced soft X-ray sources, large-scale high-power laser systems, free-electron lasers, fiber-based sources of short optical pulse, and applications of short pulse lasers. In each chapter readers can find fascinating topics related to the high energy and/or short pulse laser technique. Individual chapters should serve the broad spectrum of readers of different expertise, layman, undergraduate and postgraduate students, scientists, and engineers, who may in this book find easily explained fundamentals as well as advanced principles of particular subjects related to these phenomena.